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Abstract

The computational imaging community has built increasingly powerful reconstruction algo-
rithms, yet real-world deployments routinely fail. We show that a 5-parameter sub-pixel op-
erator mismatch—well within manufacturing tolerances—degrades the state-of-the-art CASSI
transformer (MST-L) by 13.98 dB, erasing years of algorithmic progress. This paper argues that
the bottleneck is not the solver but the infrastructure around it: evaluation protocols, physics
representations, calibration pipelines, and benchmarks. Drawing on the SolveEverything.org
framework, we present the Physics World Model (PWM) as the “rail” for computational
imaging—a standardized evaluation harness comprising: (i) OperatorGraph intermediate repre-
sentation (IR), a universal directed acyclic graph (DAG) representation spanning 64 modalities
across 5 physical carriers with 89 validated templates; (ii) a 4-scenario evaluation protocol
separating solver quality from operator fidelity; (iii) the Leaderboard for Imaging Physics (LIP-
Arena), a prospective Commit-Measure-Score competition eliminating benchmark overfitting;
and (iv) a Red Team adversarial verification module. Across a 26-modality benchmark, we
demonstrate that operator correction improves reconstruction by +0.54 to +48.25 dB across 9
correction configurations spanning 7 distinct modalities, with mismatch (Gate 3) identified as
the binding constraint in every modality tested.1 PWM provides the infrastructure to move
computational imaging from artisanal practice to industrial standardization.

1 Introduction

In 2022, the Mask-guided Spectral-wise Transformer (MST-L) Cai et al. [2022] achieved 34.81 dB on
the standard CASSI benchmark—a number that represents years of sustained algorithmic progress
in hyperspectral image reconstruction. Yet when the coded aperture mask is subjected to a 5-
parameter perturbation (sub-pixel shift, rotation, dispersion drift, and spectral axis tilt; see sec-
tion 2.1 for details)—well within the manufacturing and alignment tolerances of any real optical
system—the same method collapses to 20.83 dB, a loss of 13.98 dB. Under this sub-pixel mismatch
model, deep-learning solvers (HDNet, MST-S, MST-L) lose 12.78–13.98 dB (table 1). To put this
in perspective, the entire history of CASSI reconstruction—from GAP-TV Yuan [2016] at 24.34 dB
to MST-L Cai et al. [2022] at 34.81 dB—spans only 10.47 dB. A sub-pixel operator mismatch erases
years of algorithmic improvement.

This is not an isolated failure. Across modalities—CASSI, CACTI Llull et al. [2013], single-
pixel cameras (SPC) Duarte et al. [2008]—the pattern repeats: the most powerful neural solvers
exhibit the largest sensitivity to forward-model error. Classical methods such as GAP-TV lose only

1With full cross-solver validation for CASSI; other modalities assessed by absolute mismatch magnitude.
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3.38 dB under the same mismatch, precisely because they lack the capacity to overfit the operator.
The paradox is stark: the field has been building faster and faster trains while ignoring the fact
that the rails are broken.

The thesis. We argue that the computational imaging community is optimizing the wrong layer.
The bottleneck is not the solver—the reconstruction algorithm that maps measurements to images,
whether via deep learning Ongie et al. [2020] or algorithm unrolling Monga et al. [2021]—but
the infrastructure around it: the evaluation protocols, the physics representations, the calibration
pipelines, and the benchmarks that determine what counts as progress. In the language of industrial
revolutions, solvers are trains—visible, glamorous, and destined to commoditize. The compounding,
durable value lies in the rails: the standards, metrics, and institutional infrastructure that make it
possible for any train to run reliably.

This paper presents the Physics World Model (PWM) as precisely such a rail for com-
putational imaging. PWM is not a new reconstruction algorithm. It is an evaluation harness—a
standardized infrastructure layer that makes it possible to measure, compare, and improve recon-
struction methods under realistic physical conditions.

SolveEverything framing. Our design follows the SolveEverything.org framework Wissner-
Gross [2026], which identifies a recurring pattern across domains—from protein folding to chip
design to weather prediction—in which transformative progress requires not just better models but
better infrastructure. SolveEverything characterizes the pre-infrastructure phase as The Muddle
(maturity levels L0–L1): a regime in which practitioners cannot agree on what to measure, how to
measure it, or what the measurements mean.

Computational imaging is firmly in The Muddle. Every laboratory uses different test scenes,
different noise models, different mismatch assumptions (if any), and different metrics. A recon-
struction method that reports 34 dB on one benchmark may achieve 22 dB on another, and neither
number tells us anything about real-world deployment. There is no standard forward-model repre-
sentation, no common evaluation protocol, and no mechanism for prospective (rather than retro-
spective) assessment. The consequence is a literature of mutually incomparable results, an illusion
of progress driven by leaderboard optimization, and a sim-to-real gap that remains invisible until
hardware deployment.

Paper overview. We present PWM as the evaluation harness that moves computational imaging
from The Muddle toward industrialization. The system comprises four interlocking components
(mapped to the Industrial Intelligence Stack in table 2):

1. OperatorGraph IR—a universal directed acyclic graph (DAG) representation for forward
measurement operators that spans 64 modalities across 5 physical carriers (photons, electrons,
spins, acoustic waves, particles) using 89 validated templates.

2. 4-Scenario Evaluation Protocol—a standardized framework that measures every solver
under Ideal, Mismatch, Corrected (calibrated), and Oracle Mask conditions, isolating the
contribution of operator knowledge from solver architecture.

3. LIP-Arena—a prospective evaluation competition using a Commit-Measure-Score protocol
in which test data is generated after the submission deadline, eliminating memorization and
overfitting to known benchmarks.
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4. Red Team module—an adversarial evaluation layer that probes submitted methods against
novel mismatches, compound perturbations, out-of-family physics, distribution shifts, com-
pute traps, and gate-flip scenarios.

Contributions. Our specific contributions are:

1. SolveEverything mapping to imaging. We provide the first systematic mapping of the
SolveEverything Industrial Intelligence Stack—all 9 layers and the L0–L5 maturity ladder—
to the computational imaging domain, producing a concrete roadmap from the current L1
state to full industrialization (section 3).

2. OperatorGraph IR as universal physics representation. We define a graph-based
intermediate representation for forward measurement operators that unifies 64 modalities
under a single formalism, with 89 validated templates supporting automatic differentiation,
adjoint computation, and mismatch injection (section 4).

3. 26-modality benchmark evidence. We present the first cross-modality sensitivity analysis
demonstrating that neural solvers systematically amplify operator mismatch, with degrada-
tion ranging from 3.38 dB (GAP-TV) to 13.98 dB (MST-L) on CASSI alone (section 2).

4. Operator correction across 9 correction configurations spanning 7 distinct modal-
ities (16 registered). We show that calibrating the forward operator—even with classical
methods—recovers a substantial fraction of mismatch loss across 9 correction configurations
spanning 7 distinct modalities (with 7 additional modalities registered for future evaluation),
confirming that the dominant failure mode in deployed imaging systems is not solver quality
but operator fidelity.

5. LIP-Arena prospective evaluation protocol. We introduce the first Commit-Measure-
Score competition for computational imaging, with anti-Goodhart scoring, safety brakes, and
outcome-based governance, providing a sustainable institutional mechanism for measuring
genuine progress.

The remainder of this paper is organized as follows. Section 2 quantifies the solver-only op-
timization trap using CASSI as a case study. Section 3 maps the SolveEverything framework to
computational imaging. Section 4 presents the PWM architecture in detail. Subsequent sections
describe the Triad Law diagnostic framework, multi-agent orchestration, experiments, and impli-
cations for the field.

2 The Problem: Solver-Only Optimization

The computational imaging community has invested enormous effort in building better reconstruc-
tion algorithms—deeper networks, more sophisticated architectures, larger training sets—rooted
in the compressed sensing paradigm Donoho [2006], Candès and Wakin [2008], while treating the
forward measurement operator as a fixed, known quantity. This section demonstrates that this
assumption is catastrophically wrong, and that the resulting solver-only optimization paradigm
produces an illusion of progress that collapses on contact with physical reality.
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Table 1: Mask-sensitivity spectrum for CASSI reconstruction methods. Ideal PSNR (Sce-
nario I), Mismatch PSNR (Scenario II), Degradation (I→II), and Oracle Gain (II→IV). All values
in dB, averaged over 10 test scenes. Neural solvers (MST-S, MST-L, HDNet) exhibit dramatically
larger mismatch degradation than classical methods (GAP-TV, PnP-HSICNN), confirming that
model capacity amplifies operator sensitivity.

Method Ideal (I) Mismatch (II) Degradation Oracle Gain

GAP-TV Yuan [2016] 24.34 20.96 −3.38 +0.76
PnP-HSICNN‡ Wang et al. [2017] 25.12 19.10 −6.02 +0.71
MST-S Cai et al. [2022] 33.98 20.99 −12.99 +5.29
MST-L Cai et al. [2022] 34.81 20.83 −13.98 +6.50
HDNet Hu et al. [2022] 34.66 21.88 −12.78 +0.00

‡ PnP-HSICNN values are estimated from prior experiments and have not yet been re-validated under the

InverseNet 5-parameter mismatch; all other rows are InverseNet-validated Yang [2026].

Oracle Gain for InverseNet-validated methods uses Scenario IV (Oracle Mask) PSNR—the true operator applied to

mismatched data—representing the upper bound on correction performance.

2.1 The Mask-Sensitivity Spectrum

To quantify the scale of the problem, we evaluate five representative CASSI reconstruction methods
under a standardized 4-scenario protocol. In Scenario I (Ideal), the true forward operator H is
used for both measurement simulation and reconstruction—the oracle upper bound reported in vir-
tually all published work. In Scenario II (Mismatch), measurements are generated with H but
reconstruction uses the nominal operatorHnom, which differs by a sub-pixel mask shift (∆x=0.5 px,
∆y = 0.3 px), 0.1◦ rotation, 1% dispersion drift, and 0.15◦ spectral axis tilt—a 5-parameter per-
turbation well within typical manufacturing and alignment tolerances.2 In Scenario III (Cor-
rected), a calibrated operator Ĥ is used for reconstruction, obtained via a lightweight calibration
procedure. The Degradation column reports the drop from Scenario I to Scenario II; the Oracle
Gain column reports the improvement from Scenario II to Scenario IV (Oracle Mask).

The results in table 1 reveal a striking pattern. Under ideal conditions, MST-L leads the field
at 34.81 dB—a full 10.47 dB above GAP-TV. Under mismatch, MST-L collapses to 20.83 dB, while
GAP-TV drops only to 20.96 dB. The classical method matches the state-of-the-art transformer
under realistic physical conditions.

Key insight: neural solvers amplify mismatch sensitivity. The degradation column tells
the story most clearly: GAP-TV loses 3.38 dB, PnP-HSICNN loses 6.02 dB (estimated), and MST-
L loses 13.98 dB. There is a near-perfect inverse relationship between ideal-condition performance
and mismatch robustness. The same representational capacity that enables MST-L to learn subtle
spectral correlations in the training data also enables it to overfit the precise structure of the
forward operator it was trained with. When that operator changes by even a sub-pixel amount,
the learned features become not merely useless but actively harmful, producing structured artifacts
that degrade quality far below what the classical GAP-TV achieves.

HDNet presents a partial counterexample: it achieves high ideal PSNR (34.66 dB) with degrada-
tion of −12.78 dB, retaining 21.88 dB under mismatch. However, its Oracle Gain is zero (+0.00 dB),

2Mismatch parameters from the InverseNet validation suite Yang [2026]: dx=0.5 px, dy=0.3 px, θ=0.1◦, a1=2.02
(nominal 2.0), α=0.15◦.
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indicating that its mask-conditioning pathway cannot exploit an improved operator estimate—a
hallmark of mask-oblivious architectures. This taxonomy of solver behavior—mask-oblivious, mask-
conditioned, and mask-adapted—has important implications for the design of calibration-aware
architectures.

2.2 Evaluation Fragmentation

The mask-sensitivity spectrum is only one dimension of a much larger problem. Even if every lab
evaluated mismatch sensitivity, the results would remain incomparable due to pervasive evaluation
fragmentation:

� Metrics. Some groups report peak signal-to-noise ratio (PSNR); others report structural
similarity (SSIM), spectral angle mapper (SAM), or learned perceptual image patch similarity
(LPIPS). Metrics are computed on different dynamic ranges, with or without border cropping,
and averaged over different test splits.

� Datasets. CASSI methods are evaluated on KAIST Choi et al. [2017], CAVE Yasuma
et al. [2010], ICVL Arad and Ben-Shahar [2016], or custom datasets with different spatial
resolutions, spectral bands, and scene statistics. Results on one dataset do not transfer to
another.

� Noise models. Some methods assume noiseless measurements; others add Gaussian noise
at varying SNRs; still others use Poisson-Gaussian models. The noise model interacts with
mismatch in complex ways that make cross-paper comparisons meaningless.

� Mismatch models. The few papers that consider operator mismatch define it differently:
some shift the mask, some perturb dispersion parameters, some add calibration error. There
is no standard mismatch taxonomy or severity scale.

The result is a literature in which every paper reports numbers that cannot be meaningfully
compared with any other paper. Progress appears rapid when measured within a single group’s
evaluation setup, but the aggregate state of the field is unknown. This is precisely the condition
that the SolveEverything framework calls The Muddle Wissner-Gross [2026]: everyone is working
hard, but no one can tell whether the work is adding up.

2.3 The Scale of the Challenge

The fragmentation problem becomes combinatorially intractable when viewed across the full land-
scape of computational imaging. PWM’s current registry includes 64 distinct modalities spanning
five physical carriers. For each modality, at least 5 types of operator mismatch are physically
relevant (alignment, calibration drift, manufacturing tolerance, environmental variation, model ap-
proximation error). The solver space includes at least 10 competitive reconstruction methods per
modality.

The resulting evaluation space is therefore on the order of:

64 modalities× 5 mismatch types× 10 solvers = 3,200 experiments (minimum). (1)

With multiple severity levels per mismatch type and multiple test scenes per experiment, the full
evaluation matrix easily exceeds 105 individual runs. No ad hoc, lab-by-lab evaluation effort can
cover this space. What is needed is not more careful experimentation but a fundamentally different
approach: standardized infrastructure for evaluation.
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2.4 Summary: The Case for Infrastructure

The evidence presented in this section leads to three conclusions:

1. Neural solvers amplify mismatch. The most capable architectures exhibit the largest
sensitivity to operator error, with MST-L losing 13.98 dB versus GAP-TV’s 3.38 dB (table 1).

2. Evaluation fragmentation hides the problem. Incomparable metrics, datasets, noise
models, and mismatch definitions prevent the community from recognizing the severity of the
sim-to-real gap.

3. The scale is beyond ad hoc effort. With 64 modalities, 5+ mismatch types, and 10+
solvers, the evaluation space requires automated, standardized infrastructure—not heroic
individual experiments.

The field does not need a better solver. It needs a better rail. The next section presents the
conceptual framework—drawn from SolveEverything.org—that guides the design of that rail.

3 The SolveEverything Framework for Imaging

The SolveEverything.org framework Wissner-Gross [2026] identifies a recurring pattern across do-
mains that have undergone AI-driven transformation: the decisive enabler is never the model alone
but the infrastructure that makes models measurable, comparable, and improvable. This section
maps the framework’s two core structures—the four stages of revolution and the nine-layer Indus-
trial Intelligence Stack—to computational imaging, producing a concrete roadmap for moving the
field from its current pre-industrial state to systematic, scalable progress.

3.1 Four Stages of Revolution

SolveEverything identifies four stages through which a domain passes on its way from artisanal
practice to industrial abundance. We map each stage to computational imaging:

Stage 1: Legibility. Can you measure the problem? In imaging terms: can you define what
“reconstruction quality” means in a way that all practitioners agree on? Currently, the answer is
no. As documented in section 2.2, the field uses incommensurable metrics, datasets, noise models,
and mismatch definitions. The first prerequisite for progress is a shared measurement framework.

Stage 2: Harnessing. Can you capture the energy? In imaging terms: can you standardize
evaluation so that improvements measured by one group are meaningful to all others? This requires
not only agreed-upon metrics but a common protocol for applying them—including standardized
forward operators, mismatch injection procedures, and reporting formats. The 4-scenario protocol
and OperatorGraph IR described in section 4 are designed to achieve exactly this.

Stage 3: Institutionalization. Can you scale it? In imaging terms: can you automate cali-
bration and evaluation so that they do not require per-system, per-lab, per-paper manual effort?
This is the stage at which LIP-Arena and the Red Team module operate: automated, prospective
evaluation that runs continuously and at scale, with institutional governance to ensure integrity.
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Stage 4: Abundance. Is it a commodity? In imaging terms: calibration as a utility. Every
imaging system ships with a self-calibrating operator model that continuously updates itself, and
reconstruction quality is guaranteed by infrastructure rather than heroic engineering. This is the
end state that PWM is designed to enable, though the field is far from reaching it today.

3.2 Rails vs. Trains

The SolveEverything framework draws a fundamental distinction between rails and trains:

“The durable, compounding value. . . will not be found in owning any single AI model.
Models are the ‘trains’ that will eventually all look the same. The real value lies in
owning the ‘rails’.” —SolveEverything.org Wissner-Gross [2026]

In computational imaging, the trains are reconstruction algorithms—GAP-TV, MST-L, HDNet,
and their successors. The history of deep learning in other domains (e.g., image classification, nat-
ural language processing) strongly suggests that reconstruction algorithms will converge: architec-
tures will commoditize, pre-trained foundation models will emerge, and the marginal improvement
from any single new method will shrink asymptotically.

The rails are the infrastructure components that remain valuable regardless of which solver is
running:

� The OperatorGraph IR that represents forward models in a universal, machine-readable for-
mat.

� The 4-scenario evaluation protocol that separates solver quality from operator fidelity.

� The LIP-Arena that provides prospective, anti-Goodhart evaluation.

� The calibration pipelines that correct operators before reconstruction.

� The governance structures that ensure reproducibility and accountability.

PWM is designed entirely as a rail. It does not include a reconstruction algorithm; it includes
the infrastructure that makes reconstruction algorithms measurable.

3.3 The Industrial Intelligence Stack

SolveEverything defines a nine-layer stack that organizes the components needed for industrializing
AI in any domain. Table 2 provides the detailed mapping of each layer to the corresponding PWM
component.

We briefly describe the non-obvious layers:

Layer 1: Purpose & Payoff. Before building infrastructure, one must define what success looks
like. For PWM, we set two concrete thresholds: a recovery ratio (corrected PSNR divided by ideal
PSNR) of at least 0.80, meaning that calibration recovers at least 80% of the oracle performance; and
an oracle gap (ideal PSNR minus corrected PSNR) of at most 2 dB. These thresholds operationalize
the concept of “good enough calibration” and provide a pass/fail criterion for the entire system.
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Table 2: SolveEverything Industrial Intelligence Stack mapped to PWM. Each layer
of the generic stack is instantiated with the corresponding PWM component and its concrete
implementation.

Layer Generic Name PWM Component Implementation

1 Purpose & Payoff Recovery targets Recovery ratio ≥ 0.80; oracle gap ≤ 2 dB

2 Task Taxonomy OperatorGraph IR 64 modalities, 89 templates

3 Observability Diagnostics RunBundle, DR-IS, TriadReport

4 Targeting System LIP-Arena Commit-Measure-Score protocol

5 Model Layer Reconstruction methods GAP-TV, MST-L, HDNet, etc.

6 Actuation Operator correction Calibrated Ĥ fed to solvers

7 Verification Red Team module 2,900+ adversarial tests

8 Governance Outcome-based ranking Compute escrow, open reports

9 Distribution Universal protocol OperatorGraph IR as interchange format

Layer 3: Observability. A system that cannot be observed cannot be improved. PWM’s ob-
servability layer centers on three instruments: (i) RunBundle, the immutable record of every
evaluation run, including all inputs, outputs, hyperparameters, and random seeds; (ii) DR-IS
(Degradation-Recovery Importance Sampling), a diagnostic that identifies which mismatch param-
eters contribute most to reconstruction loss; and (iii) TriadReport, a standardized 3-panel report
showing ideal, mismatched, and corrected reconstructions side by side for every test scene.

Layer 4: Targeting System. The LIP-Arena (described in detail in section 4) functions as the
targeting system: it identifies which problems matter most and directs community effort toward
them. By publishing challenge tracks organized around specific mismatch types and modalities,
LIP-Arena ensures that research effort is allocated to the highest-impact problems rather than the
most convenient benchmarks.

Layer 7: Verification. The Red Team module serves as the adversarial verification layer. With
over 2,900 pre-designed test scenarios spanning novel mismatch types, compound perturbations,
out-of-family physics, distribution shift, and compute traps, it probes submitted methods for failure
modes that retrospective evaluation would never reveal.

Layer 8: Governance. Outcome-based ranking means that methods are ranked by their actual
deployed performance (including mismatch and calibration), not by their ideal-condition leader-
board numbers. Compute escrow ensures that all methods are evaluated under comparable com-
putational budgets, preventing the conflation of algorithmic improvement with hardware scaling.

3.4 The L0–L5 Maturity Ladder

SolveEverything defines six maturity levels for any domain’s infrastructure. Table 3 maps these
levels to computational imaging.

Current position: L1 → L2. The InverseNet benchmark Yang [2026] established L1 by demon-
strating that mismatch is measurable and defining a 3-scenario protocol (Ideal, Mismatch, Oracle).
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Table 3: L0–L5 maturity ladder for computational imaging. Current state: transitioning
from L1 to L2. PWM provides the infrastructure needed to reach L3 and beyond.

Level Name Imaging Definition

L0 The Muddle No agreement on metrics, datasets, or mis-
match definitions. Every lab runs its own eval-
uation. Results are mutually incomparable.
(Pre-PWM status quo.)

L1 Measurable Clear metrics exist. The 4-scenario protocol
defines what to measure and how. Mismatch
is acknowledged as a first-class evaluation axis.
(InverseNet contribution.)

L2 Repeatable Standard operating procedures (SOPs) are
documented and published. Any lab can re-
produce any other lab’s evaluation using the
same OperatorGraph templates, datasets, and
scoring code.

L3 Automated 80% of calibration and evaluation runs with-
out human intervention. LIP-Arena runs
autonomously. New modalities can be on-
boarded via templated OperatorGraph defini-
tions.

L4 Industrialized Calibration as a service. Hardware vendors
ship imaging systems with PWM-compatible
operator models. Evaluation is continuous and
infrastructure-grade.

L5 Commoditized Universal self-calibration. Every imaging sys-
tem continuously estimates and corrects its
own forward operator. Reconstruction quality
is guaranteed by infrastructure.

This work extends InverseNet’s framework to a 4-scenario protocol: InverseNet’s Ideal and Mis-
match map to our Scenarios I and II; InverseNet’s Oracle (true operator on mismatched data) maps
to our Scenario IV (Oracle Mask); and Scenario III (Corrected) is a new contribution. The protocol
was validated across three modalities (CASSI, CACTI, SPC). PWM extends this to a 4-scenario
protocol—adding a Corrected scenario that measures calibration effectiveness—across 64 modal-
ities and provides the OperatorGraph IR, RunBundle infrastructure, and LIP-Arena governance
needed to reach L2 (repeatability) and begin the transition to L3 (automation). The gap from L2
to L3 is primarily an engineering challenge: automating operator calibration, scaling the evaluation
pipeline, and building the institutional capacity to run LIP-Arena rounds continuously.

The critical transition: L2 → L3. The most impactful transition in the maturity ladder is
from L2 (repeatable, but manual) to L3 (automated). History suggests that this is where trans-
formative progress occurs: it is the transition from artisanal craft to industrial process, the point
at which the rate of improvement shifts from human-limited to infrastructure-limited. In protein
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folding, the analogous transition was CASP’s evolution from a biennial manual assessment to an
automated, continuous evaluation pipeline—a transition that directly enabled the AlphaFold break-
through Jumper et al. [2021]. PWM’s architecture is designed to make this transition possible for
computational imaging.

3.5 From Framework to Architecture

The SolveEverything framework provides the what : a clear enumeration of the infrastructure com-
ponents needed and the maturity milestones that mark progress. The next section provides the how :
the concrete architecture of PWM, including the OperatorGraph IR specification, the 4-scenario
evaluation protocol, the LIP-Arena competition design, and the Red Team adversarial evaluation
module.

4 PWM Architecture: The Evaluation Harness

This section presents the concrete architecture of the Physics World Model (PWM) evaluation
harness. PWM comprises four interlocking subsystems: the OperatorGraph IR for physics repre-
sentation (section 4.1), the 4-scenario evaluation protocol for standardized assessment (section 4.2),
the LIP-Arena for prospective evaluation (section 4.3), and the Red Team module for adversarial
verification (section 4.4). Together, these subsystems implement all nine layers of the Industrial
Intelligence Stack described in section 3.3.

4.1 OperatorGraph IR: A Universal DAG for Physics

At the core of PWM lies the OperatorGraph Intermediate Representation (IR)—a directed
acyclic graph (DAG) formalism that represents any forward measurement operator as a composi-
tion of primitive physical operations. The design is motivated by a key observation: despite the
enormous diversity of imaging modalities, the underlying physics decomposes into a surprisingly
small set of recurring primitives.

Nodes. Each node in an OperatorGraph wraps a single primitive operator drawn from a validated
library. Primitive operators include:

� Mask modulation: element-wise multiplication by a coded aperture pattern, x 7→ M⊙ x.

� Convolution: linear shift-invariant filtering, x 7→ h∗x, encompassing point spread functions,
blur kernels, and diffraction models.

� Spectral dispersion: wavelength-dependent spatial shift, xλ 7→ Sλ(xλ), the core operation
in CASSI systems.

� Temporal modulation: frame-dependent coding, xt 7→ Ct ⊙ xt, as in CACTI and other
snapshot compressive video systems.

� Projection: line-integral or Radon transform, x 7→ Rθ(x), for tomographic modalities.

� Fourier sampling: k-space under-sampling, x 7→ PΩF(x), for MRI and related modalities.

� Noise injection: additive, multiplicative, or Poisson noise models, y 7→ y + η.

� Sensor integration: spatial and temporal binning, quantization, and detector response,
modeling the analog-to-digital conversion chain.
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Edges. Edges define data flow between nodes. An edge from node u to node v means that the
output of operator u is an input to operator v. The DAG structure enforces a well-defined execution
order and prohibits cycles, ensuring that every OperatorGraph compiles to a deterministic forward
model. Where a node requires multiple inputs (e.g., a sensor that integrates both signal and
dark current), multiple incoming edges are supported with explicit concatenation or summation
semantics.

Compilation. Given an OperatorGraph G = (V, E), the system compiles the graph into a callable
forward model HG : X → Y by topological traversal. When all primitive nodes support an adjoint,
the system also compiles H⊤

G automatically. Automatic differentiation through the graph enables
gradient-based calibration of any mismatch parameter.

Physical carriers. The primitive library spans five physical carriers:

1. Photons: optical imaging (CASSI Wagadarikar et al. [2008], SPC Duarte et al. [2008],
lensless, coded diffraction, etc.).

2. Electrons: electron microscopy (cryo-EM, STEM, SEM).

3. Spins: magnetic resonance imaging Lustig et al. [2007] (MRI, diffusion MRI, spectroscopic
MRI).

4. Acoustic waves: ultrasound, photoacoustic imaging, sonar.

5. Particles: computed tomography Feldkamp et al. [1984], positron emission tomography
(PET), single-photon emission CT (SPECT), neutron imaging.

Templates and coverage. PWM includes 89 validated OperatorGraph templates covering 64
distinct modalities. Some modalities require multiple templates to capture different hardware
configurations (e.g., single-disperser vs. dual-disperser CASSI). Each template specifies the graph
topology, the primitive operators at each node, the expected parameter ranges, and the physically
meaningful mismatch axes.

Example: CASSI. The following equation illustrates the OperatorGraph for a standard single-
disperser CASSI Wagadarikar et al. [2008] system:

GCASSI : xλ︸︷︷︸
Source

Mask−−−→ M⊙ xλ︸ ︷︷ ︸
Modulated

Dispersion−−−−−−→ Sλ(M⊙ xλ)︸ ︷︷ ︸
Dispersed

Sensor−−−−→
∑

λ Sλ(M⊙ xλ)︸ ︷︷ ︸
Measurement

Noise−−−→ y (2)

The mismatch axes for this template include mask shift (∆x, ∆y), mask rotation (∆θ), dispersion
slope (∆s), dispersion axis offset (∆ϕ), detector gain (∆g), and additive noise variance (σ2). Each
axis has a physically motivated default range derived from hardware specifications and optical
tolerance analysis.

4.2 The 4-Scenario Evaluation Protocol

Every reconstruction method evaluated within PWM is assessed under four standardized scenarios
that systematically vary the relationship between the measurement operator and the reconstruction
operator. Table 4 defines all four scenarios.
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Table 4: The 4-scenario evaluation protocol. H denotes the true forward operator, Hnom

the nominal (assumed) operator, and Ĥ the calibrated operator. Each scenario isolates a different
aspect of reconstruction performance.

Scenario Measurement Reconstruction Interpretation

I Ideal H H Oracle upper bound: what is
achievable with perfect opera-
tor knowledge.

II Assumed/Mismatch H Hnom Mismatch baseline: the default
deployment condition where
the nominal operator differs
from truth.

III Corrected H Ĥ Calibration benefit: how much
performance is recovered by es-
timating the true operator.

IV Oracle Mask H Htrue Correction ceiling: true op-
erator applied to mismatched
data, providing the upper
bound on what any correction
can achieve.

Scenario I (Ideal). The true operator H is used for both measurement generation and recon-
struction. This is the standard evaluation setting in virtually all published work and represents
the oracle upper bound on reconstruction quality. It answers the question: how good is this solver
when the physics is perfectly known?

Scenario II (Assumed/Mismatch). Measurements are generated with the true operator H,
but reconstruction uses the nominal operatorHnom—the operator that the system believes is correct
but that differs from ground truth due to alignment errors, manufacturing tolerances, or calibration
drift. This is the realistic deployment condition and is the scenario most relevant to practitioners.
It answers the question: how robust is this solver to operator error?

Scenario III (Corrected). Measurements are generated with H, but reconstruction uses a
calibrated operator Ĥ obtained by running a calibration procedure on the nominal operator. The
difference between Scenario III and Scenario II measures the calibration gain—the value added by
operator correction. The difference between Scenario I and Scenario III measures the residual gap—
the remaining performance lost to imperfect calibration. It answers: how much does calibration
help?

Scenario IV (Oracle Mask). The true operator Htrue is used for reconstruction on data gener-
ated with the mismatched system, providing the upper bound on what any correction algorithm can
achieve. The gap between Scenario IV and Scenario I reveals the irreducible loss due to mismatch-
induced measurement degradation. It answers: what is the ceiling for operator correction?
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Derived metrics. From the four scenario PSNR values, we derive:

Degradation = PSNRI − PSNRII, (3)

Calibration Gain = PSNRIII − PSNRII, (4)

Recovery Ratio =
PSNRIII − PSNRII

PSNRI − PSNRII
, (5)

Oracle Gap = PSNRI − PSNRIII. (6)

The recovery ratio and oracle gap are the primary pass/fail metrics referenced in Layer 1 of the
Industrial Intelligence Stack (table 2): a recovery ratio ρ (eq. (5)) of at least 0.80, meaning that
calibration recovers at least 80% of the mismatch-induced degradation, and an oracle gap ≤ 2 dB
indicate that calibration is sufficient for deployment.

4.3 LIP-Arena: Prospective Evaluation via Commit-Measure-Score

Retrospective benchmarks—including InverseNet—suffer from an inherent limitation: the test data
exists before the methods are developed. No matter how carefully the benchmark is designed,
determined participants can eventually overfit to it through hyperparameter tuning, architecture
search, or implicit memorization. To address this, PWM includes the LIP-Arena (Leaderboard for
Imaging Physics Arena), a prospective evaluation competition in which test data is generated after
all submissions are finalized. The key principle is: data created after deadline—no memorization
possible.

The four-phase Commit-Measure-Score protocol proceeds as follows:

Phase 1: Commit (2 weeks). Participating teams submit sealed containers encapsulating their
reconstruction method, along with a declared compute budget (FLOPs, wall-clock time, and mem-
ory). Submissions are cryptographically hashed and timestamped. No modifications are permitted
after the commit deadline.

Phase 2: Measure (2 weeks). New measurement data is generated after the commit dead-
line using OperatorGraph templates with freshly sampled mismatch parameters. Test scenes are
drawn from a held-out pool that has never been published. The measurement operator, mismatch
parameters, and test scenes are sealed until Phase 4.

Phase 3: Execute (1 week). All submitted containers are run in an identical, sandboxed com-
pute environment. Each container receives only the raw measurements and the nominal operator
Hnom—never the true operator or the ground-truth images. Execution is monitored for compute
budget compliance: containers that exceed their declared budget are flagged.

Phase 4: Score (1 week). Reconstructions are scored automatically against ground-truth im-
ages using PSNR, SSIM, LPIPS, and spectral-angle mapper (SAM) where applicable. All four
scenarios are evaluated. Results, RunBundles, and failure analyses are published in an open round
report.

4.3.1 Evaluation Tracks

LIP-Arena organizes competition into four tracks that target different aspects of the reconstruction
problem:
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1. Correct: Given mismatched measurements, produce the best reconstruction. Methods may
use any calibration strategy. Primary metric: corrected PSNR (Scenario III).

2. Diagnose: Given mismatched measurements, identify which mismatch parameters are present
and estimate their values. Primary metric: parameter estimation error.

3. No-GT: Evaluate reconstruction quality without access to ground-truth images. Methods
must provide calibrated uncertainty estimates. Primary metric: correlation between predicted
and actual PSNR.

4. Design: Given a modality and a target recovery ratio, design the optimal coded aperture
pattern or coding scheme. Primary metric: recovery ratio achieved by a reference solver.

4.3.2 Anti-Goodhart Scoring

Goodhart’s Law—“when a measure becomes a target, it ceases to be a good measure”—is the
central threat to any benchmark. LIP-Arena mitigates this through three mechanisms:

1. Prospective dominance weighting. Final scores are computed as 0.7×PSNRprospective +
0.3× PSNRretrospective, ensuring that performance on unseen data dominates the ranking.

2. Gaming penalties. Methods that exhibit statistically significant performance differences
between prospective and retrospective data (i.e., methods that have likely overfit to the
retrospective set) receive a scoring penalty proportional to the gap.

3. Multi-metric ranking. Rankings are computed over an ensemble of metrics (PSNR, SSIM,
LPIPS, SAM), preventing optimization for any single number.

4.4 Red Team Module: Adversarial Verification

The Red Team module is the adversarial verification layer that probes submitted methods for
failure modes beyond the standard evaluation scenarios. It comprises six categories of adversarial
tests, totaling over 2,900 pre-designed scenarios:

1. Novel mismatch: mismatch types not represented in the training distribution (e.g., non-
rigid mask deformation, spatially varying dispersion).

2. Compound mismatch: simultaneous perturbation of multiple operator parameters beyond
the range of single-axis evaluations.

3. Out-of-family physics: test scenes or measurement conditions drawn from a different phys-
ical regime (e.g., fluorescence emission applied to an absorption-trained solver).

4. Distribution shift: test scenes with statistics dramatically different from training data (e.g.,
medical images for a solver trained on natural scenes).

5. Compute traps: inputs designed to trigger worst-case computational complexity (e.g., itera-
tive methods that fail to converge, attention mechanisms with adversarial token distributions).

6. Gate-flip scenarios: edge cases where a small change in the input causes the output to
qualitatively change (e.g., a mismatch parameter crossing a phase-transition boundary).
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Red Team results are reported separately from main evaluation scores to avoid penalizing meth-
ods for failing on out-of-distribution scenarios. However, persistent Red Team failures across rounds
are flagged in governance reports and inform the design of future standard evaluation scenarios—
ensuring that the benchmark evolves to cover newly discovered failure modes.

4.5 Safety Brakes and Governance

To prevent the publication of misleading results and ensure that LIP-Arena maintains scientific
integrity, PWM implements pre-committed safety brakes:

� Recovery ratio < 0.30: Automatic disqualification. A method that recovers less than
30% of the oracle performance after calibration is either fundamentally broken or has not
been properly configured. Note: this threshold applies to arena submissions, not to inherent
modality limitations; some modalities (e.g., CASSI) may exhibit recovery ratios below 0.30
due to the severity of the mismatch, which is diagnosed separately.

� Uncertainty miscalibration > 15%: Flag for review. Methods that claim high confidence
but produce large errors are dangerous in deployment and are flagged for manual inspection.

� Compute budget > 2× declared: Automatic disqualification. Methods that exceed their
declared compute budget by more than a factor of two are disqualified to prevent undeclared
resource advantages.

Open governance. All round reports, RunBundles, scoring code, and failure taxonomies are
published openly. Disputes are resolved through a structured appeals process with independent
reviewers. The goal is to build the same kind of institutional trust that CASP has built in protein
structure prediction: trust not in any single result, but in the process that produces results.

Failure taxonomies. After each LIP-Arena round, a failure taxonomy is published that cate-
gorizes observed failure modes by type (operator mismatch, solver limitation, calibration failure,
out-of-distribution, compute), by severity (cosmetic, significant, catastrophic), and by frequency
(isolated, systematic). These taxonomies serve as a living record of the field’s current limitations
and guide both research priorities and future challenge design.

5 The Triad Law: Diagnosing Imaging Failure

We identify three principal root causes that account for the vast majority of imaging failures across
modalities. We formalize this diagnostic framework as the Triad Law and encode it through three
sequential gates that every measurement must pass before reconstruction can succeed.

5.1 The Three Gates

Gate 1 — Recoverability (Sampling). Does the measurement encode enough information
to recover the target signal? Gate 1 is violated whenever the null space of the forward operator
H is too large, the field of view is insufficient, or the resolution limit precludes the features of
interest. Formally, if the signal x has a non-trivial component in ker(H), no algorithm — however
sophisticated — can recover it from y = Hx+ n.
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Imaging Failure

Gate 1
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Field of view
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Quantum limit
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Calibration drift
Wear
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Figure 1: The Triad diagnostic tree. Every imaging failure is classified by its binding gate as
a pre-flight diagnostic before committing to a final reconstruction. The output is a mandatory
TriadReport artifact.

Gate 2 — Carrier Budget (Noise). Is the signal-to-noise ratio sufficient for the desired re-
construction quality? Even when the forward operator is well-posed, the photon budget, dose, or
quantum efficiency may be inadequate. Gate 2 quantifies whether the carrier (e.g., photons, RF
energy, acoustic pressure) delivers enough information above the noise floor to distinguish the signal
from stochastic fluctuations.

Gate 3 — Operator Mismatch (System Fidelity). Does the assumed model match the
true physics? When Htrue ̸= Hnom, the reconstruction algorithm inverts the wrong operator,
producing artifacts that no amount of regularization can fully suppress. Sources of mismatch
include calibration drift, optical wear, thermal expansion, and manufacturing tolerances.

5.2 Triad Diagnostic Tree

Figure 1 illustrates the decision tree. Every imaging failure is routed through the three gates in
sequence; the first gate that fails is declared the binding constraint.

5.3 The TriadReport Artifact

Every benchmark submission in the Physics World Model must include a TriadReport — a struc-
tured artifact containing:

1. Dominant Gate ID — which of the three gates is the binding constraint for this run;

2. Evidence scores — quantitative metrics supporting the gate classification (null-space di-
mension, SNR estimate, operator residual norm);

3. Confidence interval — uncertainty bounds on the gate scores, propagated from measure-
ment noise and calibration uncertainty;

4. Recommended action— a prescriptive step drawn from the registry (e.g., “apply mask geo

correction” or “increase exposure by 2×”).

The TriadReport is not optional; the benchmark harness rejects any submission that omits it.
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Table 5: Gate binding analysis across modalities. ∆mismatch is the PSNR drop from Scenario I
to II (Gate 3 severity). ∆solver is the PSNR gain from the weakest to strongest solver under ideal
conditions (Gate 1/2 headroom). Gate 3 is the binding constraint whenever ∆mismatch > ∆solver.

Modality ∆mismatch (dB) ∆solver (dB) Ratio Binding Gate

CASSI 13.98 10.47 1.34× Gate 3
CACTI 20.85 — — Gate 3
SPC 17.72 — — Gate 3
MRI 38.03 — — Gate 3
Lensless 3.37 — — Gate 3
CT 12.05 — — Gate 3
Ptychography 42.06 — — Gate 3

5.4 Gate 3 Is the Binding Constraint

The central empirical finding of this work is that Gate 3 (operator mismatch) is the binding
constraint in the majority of real-world systems. Consider CASSI Wagadarikar et al. [2008]
spectral imaging: a sub-pixel mask shift with rotation and dispersion drift degrades MST-L Cai
et al. [2022] from 34.81 dB (Scenario I, ideal operator) to 20.83 dB (Scenario II, mismatched op-
erator) — a loss of 13.98 dB. By contrast, upgrading from the classical solver GAP-TV Yuan
[2016] (24.34 dB) to the state-of-the-art MST-L (34.81 dB) under ideal conditions yields a gain of
10.47 dB. The mismatch penalty dwarfs the solver upgrade benefit.

5.5 Mathematical Formulation: Recovery Ratio

We define the recovery ratio ρ (eq. (5) in section 4.2) to quantify how much of the mismatch-induced
degradation can be recovered through operator correction. A value of ρ = 1 indicates full recovery;
ρ = 0 indicates that correction had no effect. Values ρ > 1 are possible when the corrected operator
provides implicit regularization that yields reconstruction quality exceeding even the ideal-condition
baseline, as observed for CACTI (section 7).

5.6 Gate Binding Analysis

Table 5 summarizes the binding gate across representative modalities. Gate 3 dominates: in every
modality tested, the mismatch-induced PSNR drop exceeds the gain achievable by upgrading the
reconstruction algorithm alone.
The pattern is consistent: across all seven modalities in table 5, Gate 3 is binding. For CASSI,
where multiple solvers are available, the mismatch penalty (13.98 dB) exceeds the solver upgrade
gain (10.47 dB) by a factor of 1.34×. For other modalities, multiple-solver comparisons are not yet
available, but the absolute magnitude of the mismatch penalty (3.37–42.06 dB) strongly suggests
Gate 3 dominance in every case. This motivates the Physics World Model design decision to invest
first in operator correction infrastructure before pursuing solver improvements — a principle we
term “fix the physics before upgrading the math.”
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6 Multi-Agent Orchestration

The Physics World Model automates the full imaging pipeline — from user intent to repro-
ducible result — through a multi-agent architecture comprising 9 pipeline components (in-
cluding 8 agents and the RunBundle packager) and 8 support classes, totaling 10,545 lines
of Python. A critical design principle: all agents run deterministically without requiring a large
language model. An LLM may optionally be attached to generate narrative explanations, but every
gate decision, score, and recommendation is computed mechanically from the YAML registries and
Pydantic contracts.

6.1 Pipeline Overview

The end-to-end pipeline flow is as follows:

User Prompt → PlanAgent
PlanAgent → PhotonAgent + MismatchAgent + RecoverabilityAgent

Gate Agents → AnalysisAgent
AnalysisAgent → Negotiator

Negotiator → PreFlightReportBuilder
PreFlightReport → Pipeline Runner
Pipeline Runner → RunBundle

6.2 Agent Descriptions

PlanAgent. Parses user intent, maps the request to a registered modality, and builds the ImagingSystem
object. All modality look-ups are resolved against modalities.yaml — no free-form strings are
accepted.

PhotonAgent. Computes the signal-to-noise ratio from the carrier budget (photon count, de-
tector quantum efficiency, read noise). Classifies the noise regime (shot-limited, read-limited,
background-limited) and returns a Gate 2 feasibility score.

MismatchAgent. Scores the severity of operator mismatch by comparing Hnom against the
expected Htrue using residual-norm heuristics and registry-defined mismatch signatures. Selects
the appropriate correction strategy from solver registry.yaml.

RecoverabilityAgent. Performs table-driven recoverability assessment: looks up the modal-
ity’s null-space characteristics, compression ratio, and known PSNR baselines. Returns a Gate 1
pass/fail decision with a predicted PSNR range.

AnalysisAgent. Receives the three gate scores and performs bottleneck classification. Identifies
the binding gate per the Triad Law (section 5) and generates ranked suggestions for improving
reconstruction quality.

Negotiator. Implements cross-agent veto logic. Computes the joint probability of success across
all three gates and enforces a configurable threshold below which the run is aborted with a diagnostic
message rather than producing a misleading reconstruction.
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PreFlightReportBuilder. Assembles the final pre-flight report: expected PSNR, dominant
gate, correction strategy, estimated runtime, and resource requirements. This report is presented
to the user (or downstream system) before committing compute.

Pipeline Runner. Executes the end-to-end reconstruction pipeline: loads the ExperimentSpec,
compiles the OperatorGraph, applies the selected correction strategy, invokes the solver, and col-
lects all metrics. The runner enforces deterministic execution and resource-budget compliance.

RunBundle. Packages every artifact produced by a pipeline execution—reconstructed images,
metric scores, TriadReport, logs, random seeds, and timing data—into an immutable, content-
addressed archive. RunBundles serve as the unit of reproducibility: any result can be verified by
replaying its RunBundle.

6.3 ExperimentSpec: The Executable Contract

The ExperimentSpec v0.2.1, implemented as a Pydantic StrictBaseModel with extra="forbid",
serves as the executable contract between agents. Every field is typed and validated; NaN and Inf
values are rejected at parse time. When an LLM is used, it returns only registry IDs — never raw
parameters — which are then resolved and validated mechanically.

The contract ecosystem comprises 25 Pydantic models, all inheriting from StrictBaseModel,
ensuring that no unvalidated data enters the pipeline. These models are backed by 9 YAML reg-
istries totaling 7,034 lines, covering modalities, solvers, noise profiles, mismatch types, correction
strategies, metrics, hardware profiles, datasets, and experiment templates.

7 Empirical Evidence

We present three tiers of empirical validation: a 26-modality breadth benchmark, a 16-modality
operator-correction study, and a CASSI deep dive with per-solver, per-scenario analysis.

7.1 26-Modality Benchmark

Table 6 reports the peak signal-to-noise ratio (PSNR) achieved by the Physics World Model pipeline
across all 26 registered modalities under Scenario I (ideal operator, no mismatch). Of the 64
modalities registered in the OperatorGraph IR, 26 have been numerically benchmarked to date.
Every modality passes the benchmark threshold; no modality is excluded or deferred.

The range spans nearly 75 dB, reflecting the diversity of forward models — from the heav-
ily ill-posed computed tomography (CT Chen et al. [2017], 25.46 dB) to phase retrieval, where
the analytically invertible forward model yields an identity reconstruction (100.00 dB, a numerical
ceiling rather than a measured value). The average of ≈ 37.0 dB (excluding the Phase Retrieval
identity test) confirms that the unified pipeline delivers competitive reconstruction quality across
fundamentally different physics.

7.2 16-Modality Operator Correction

Table 7 evaluates the Physics World Model operator-correction module across 16 modalities. For
each modality we report the PSNR before correction (Scenario II, mismatched operator) and after
correction (Scenario III, corrected operator), together with the absolute improvement.
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Table 6: 26-modality benchmark results (Scenario I, ideal operator). All 26/26 modalities pass.
Average PSNR ≈ 37.0 dB (excluding Phase Retrieval identity test); range 25.46–64.84 dB over
physically meaningful modalities.

# Modality PSNR (dB) # Modality PSNR (dB)

1 Widefield 27.31 14 Holography 46.85
2 Widefield Low-Dose 32.88 15 NeRF Mildenhall et al. [2020] 61.35
3 Confocal Live-Cell 29.80 16 3D Gaussian Splatting Kerbl et al. [2023] 30.89
4 Confocal 3D 29.01 17 Matrix (Generic) 33.86
5 SIM 27.48 18 Panorama Multifocal 27.90
6 CASSI Wagadarikar et al. [2008] 34.81 19 Light Field 30.35
7 SPC Duarte et al. [2008] 28.86 20 Integral Photography 27.85
8 CACTI Llull et al. [2013] 35.33 21 Phase Retrieval 100.00
9 Lensless 26.85 22 FLIM 35.38

10 Light-Sheet 26.05 23 Photoacoustic 50.54
11 CT 25.46 24 OCT 64.84
12 MRI Zbontar et al. [2018] 44.97 25 FPM 34.57
13 Ptychography Maiden and Rodenburg [2009] 59.41 26 DOT 32.06

† SPC uses the same gain-bias operator template as the generic Matrix modality, yielding identical correction

performance.

§ CASSI “After” values are Scenario IV (Oracle Mask), not Scenario III; see note below.

Note on CASSI correction algorithms. In table 7, Alg 1 refers to hierarchical beam search
(coarse correction) and Alg 2 refers to joint gradient refinement (fine correction); see Methods in
the companion paper Yang [2026] for details.

Note on CASSI baselines. Both table 7 and table 1 now use the same InverseNet 5-parameter
mismatch (sub-pixel mask shift, rotation, dispersion drift, spectral axis tilt). The Scenario II
baseline of 20.96 dB in table 7 corresponds to GAP-TV reconstruction under this mismatch; the
sensitivity table reports per-solver Scenario II values. CASSI “After” values in table 7 are oracle
upper bounds (true operator applied to mismatched data); actual calibration gains may be lower.

The most dramatic improvement is MRI coil-sensitivity correction at +48.25 dB. This large gain
reflects a severe mismatch scenario (Scenario II at 6.94 dB is near the noise floor); the corrected
55.19 dB exceeds published baselines (42.3 dB) because the mismatch was synthetically injected on
a high-quality forward model. The smallest gain (CASSI Alg 1, +0.54 dB) reflects the inherent
difficulty of CASSI operator correction with coarse beam search alone; the Lensless PSF shift gain
of +3.55 dB represents a visually significant improvement. These results confirm that operator
correction is a first-order determinant of reconstruction quality, though the correction magnitude
varies substantially by modality and algorithm.

7.3 CASSI Deep Dive

We conduct a detailed study of CASSI to illustrate how the Triad Law (section 5) manifests in a
single modality. Table 8 reports PSNR for five solvers across three evaluation conditions plus a
projected fine-tuned estimate:

� Scenario I — ideal (true) operator;
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Table 7: Operator correction across 16 modalities. “Before” is Scenario II (mismatched operator);
“After” is Scenario III (corrected operator) except for CASSI rows, which report Scenario IV
(Oracle Mask) as the correction ceiling. Improvements range from +0.54 to +48.25 dB. Phase 2
and Phase 4 entries are registered but not yet numerically evaluated.

Modality Mismatch Type Before (dB) After (dB) ∆ (dB)

Matrix (Generic) gain bias 11.14 23.35 +12.21
CT center of rotation 13.41 24.09 +10.67
CACTI Llull et al. [2013], Wang et al. [2023] mask timing 14.48 37.42 +22.94
Lensless psf shift 23.48 27.03 +3.55
MRI coil sensitivities 6.94 55.19 +48.25
SPC† gain bias 11.14 23.35 +12.21
CASSI (Alg 1, GAP-TV)§ mask geo+dispersion 20.96 21.50 +0.54
CASSI (Alg 2, GAP-TV)§ mask geo+dispersion 20.96 21.72 +0.76
Ptychography position offset 17.35 24.44 +7.09

Registered—validation in progress
OCT dispersion registered
Light Field depth estimation registered

Registered—planned
DOT scatter coeff registered
Photoacoustic speed of sound registered
FLIM irf shift registered
Integral Photography disparity offset registered
FPM led position registered

� Scenario II — mismatched (nominal) operator;

� Oracle Mask — true operator applied to mismatched data, representing the upper bound
on correction;

� Estimated — oracle operator with additional solver fine-tuning (projected, not a formal
scenario).

Oracle Mask values are InverseNet-validated Yang [2026] and correspond to Scenario IV in the
4-Scenario Protocol.

† Projected values based on expected fine-tuning gains; not measured.

‡ PnP-HSICNN has not been re-validated under the InverseNet 5-parameter mismatch; values shown are from

prior experiments. All other rows are InverseNet-validated Yang [2026].

§ Oracle Mask values represent reconstruction with the true operator applied to mismatched data (InverseNet’s

“Oracle” scenario, mapped to this work’s Scenario IV), providing an upper bound on what any correction algorithm

can achieve.

Key insight. The mismatch cost — the gap from Scenario I to Scenario II — is catastrophic. For
MST-L the drop is 34.81− 20.83 = 13.98 dB, while the best solver upgrade under ideal conditions
(GAP-TV → MST-L) yields 34.81 − 24.34 = 10.47 dB. The mismatch penalty is 1.34× the solver
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Table 8: CASSI deep dive: 5 solvers × 3 conditions + projected fine-tuned estimate. The mismatch
cost (I→II) dominates the solver upgrade gain under ideal conditions. Oracle Mask§ (Scenario IV)
reports reconstruction with the true operator on mismatched data, providing the correction ceiling.

Solver I (Ideal) II (Mismatch) Oracle Mask§ Est. Fine-tuned†

GAP-TV Yuan [2016] 24.34 20.96 21.72 ≈23.5
PnP-HSICNN‡ Wang et al. [2017] 25.12 19.10 19.81 ≈24.0
MST-S Cai et al. [2022] 33.98 20.99 26.28 ≈31.0
MST-L Cai et al. [2022] 34.81 20.83 27.33 ≈32.0
HDNet Hu et al. [2022] 34.66 21.88 21.88 ≈33.0

Table 9: SolveEverything 10-gear implementation status.

Gear Name Status

1 Targeting System BUILT
2 Outcome Contracts PARTIAL
3 Compute Escrow PARTIAL
4 Action Networks PLANNED
5 Data Trusts FOUNDATION
6 Decision Logs BUILT
7 Two-Source Rule PARTIAL
8 Compute + Energy OUT OF SCOPE
9 Fairness Targets PARTIAL
10 Literacy PARTIAL

upgrade gain. Stated differently: fixing the operator is worth more than upgrading from a classical
solver to the state of the art.

Moreover, the learned solvers (MST-S, MST-L) are more sensitive to mismatch than the model-
based solvers (GAP-TV, PnP-HSICNN). MST-L drops by 13.98 dB versus GAP-TV’s 3.38 dB. This
is consistent with the hypothesis that data-driven methods overfit to the training-time operator and
generalize poorly when the physical system drifts. Notably, the Oracle Mask§ substantially recovers
MST-L to 27.33 dB (+6.50 dB), while HDNet sees zero recovery (21.88 dB in both Scenario II and
the Oracle Mask column), confirming that HDNet is mask-oblivious.

7.4 SolveEverything Implementation Status

In addition to the 9-layer Industrial Intelligence Stack (section 3.3), the SolveEverything frame-
work Wissner-Gross [2026] defines 10 operational gears—concrete mechanisms that each drive one
or more layers of the stack. While the 9 layers describe what must be built, the 10 gears describe
how each layer operates. Table 9 reports the implementation status of each gear within PWM.

Two gears are fully built (Targeting System, Decision Logs) and one has its foundation laid
(Data Trusts). Five are partially implemented, one is planned, and one (Compute + Energy) is
currently out of scope for the imaging-focused release. The partial gears are under active develop-
ment and are expected to reach full status before the public v1.0 release.
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8 Reproducibility and Open Infrastructure

Reproducibility in computational imaging is not merely a best practice — it is a prerequisite for
the field to mature from artisanal reconstruction to industrial-grade imaging. The Physics World
Model enforces reproducibility at every layer through three mechanisms: immutable run records,
cryptographic integrity, and open governance.

8.1 RunBundle: The Immutable Run Record

Every imaging experiment executed through the Physics World Model produces a RunBundle v0.3.0
— a self-contained, immutable archive that records:

� Inputs: raw measurements, metadata, and the ExperimentSpec that parameterized the run;

� Operator state: the nominal operator Hnom, detected mismatch parameters, and the cor-
rected operator Hcorr (if correction was applied);

� Triad diagnosis: the full TriadReport including dominant gate, evidence scores, and con-
fidence intervals;

� Correction trajectory: the sequence of correction steps, intermediate residuals, and con-
vergence diagnostics;

� Outputs: reconstructed images and volumes with per-pixel uncertainty estimates;

� Compute consumed: wall time, peak memory, GPU utilization, and energy estimate.

Every artifact within the RunBundle is hashed with SHA-256. The top-level manifest includes a
Merkle root so that any tampering with individual files is detectable. RunBundles are designed to
be self-describing: a future reader with access only to the bundle and the Physics World Model
codebase can reproduce the result without additional context.

8.2 Decision Records for Imaging Systems

We introduce Decision Records for Imaging Systems (DR-IS), inspired by architectural decision
records in software engineering. Every calibration decision — whether to apply a correction, which
correction strategy to use, and what threshold triggered the decision — is cryptographically signed
and logged within the RunBundle. DR-IS entries are append-only: corrections can be refined but
never silently overwritten.

8.3 ExperimentSpec: Eliminating Ambiguity

The ExperimentSpec v0.2.1, described in section 6, is the linchpin of reproducibility. By requiring
that every parameter be drawn from a typed, validated registry, the Physics World Model eliminates
the class of irreproducibility caused by ambiguous or undocumented configuration. When an LLM
is used to generate experiment configurations, it returns only registry identifiers — never raw
numerical parameters — which are then resolved, validated, and frozen into the RunBundle. No
free-form strings enter the pipeline.
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8.4 Open-Core Licensing and Contribution Model

The Physics World Model evaluation harness is released under the MIT license, ensuring that any
researcher can audit, extend, and benchmark against the framework without licensing barriers. We
define a four-level contribution model:

1. Use the harness. Run the benchmark suite on your own data and methods. No contribution
required.

2. Submit methods. Register a new solver in the YAML registry and submit benchmark
results via a pull request.

3. Contribute modalities. Implement a new forward operator, mismatch model, and correc-
tion strategy; submit with a TriadReport and RunBundle as evidence.

4. Become a steward. Take ownership of a modality vertical — maintain the operator, curate
datasets, and review community submissions.

8.5 Test Infrastructure

The Physics World Model codebase is guarded by 3,743 tests spanning unit tests for individual
operators, integration tests for the agent pipeline, regression tests for known mismatch–correction
pairs, and end-to-end tests that verify RunBundle integrity. The test suite achieves 0 failures on
the current release branch. Continuous integration runs the full suite on every commit, and any
benchmark submission that introduces a test failure is automatically rejected.

9 The Foundry Window and Roadmap

Within the next 18 months, that metal
will cool and harden. The decisions we
make today regarding technical standards,
data rights, and supply chains will set
path dependencies: permanent tracks that
will guide or constrain the economy for
decades.

SolveEverything.org Wissner-Gross [2026]

9.1 Why Now: The Absence of Standards

Computational imaging in 2026 finds itself in a position strikingly similar to protein-structure
prediction before CASP Moult [2005] and the Protein Data Bank. Spectacular solvers exist—deep
unfolding networks, diffusion priors, implicit neural representations—yet the field lacks every piece
of shared infrastructure that enabled the AlphaFold Jumper et al. [2021] revolution:

� No CASP equivalent. There is no recurring, blinded competition with held-out test sets
and independent adjudication. Every paper evaluates on its own split, under its own noise
model, with its own operator implementation.

� No Protein Data Bank equivalent. No central repository curates calibrated forward
operators, reference measurements, or validated reconstruction bundles across modalities.

24



Commitment
Labs pre-commit

GPU hours

Focus
R&D measured on

leaderboard

Collapse
Calibration

automated

Surplus
Cost: PhD-years

→ GPU-minutes

Reinvestment
Surplus funds

next modality

Figure 2: The Abundance Flywheel. Laboratory commitment seeds focused R&D on a shared
leaderboard; focused effort collapses calibration complexity; collapsed complexity creates cost sur-
plus; surplus funds the next modality, reinforcing commitment.

� No universal evaluation protocol. PSNR on a simulated measurement with an ideal oper-
ator tells us almost nothing about deployment fidelity. The four-scenario protocol (Ideal/Assumed/Corrected/Oracle Mask)
introduced in this work is, to our knowledge, the first systematic attempt at standardization.

The field is not merely fragmented—it is pre-paradigmatic in the Kuhnian sense. And that is
precisely the opportunity.

9.2 The QWERTY Effect

Evaluation infrastructure exhibits extreme lock-in dynamics. Once five independent laboratories
adopt a common benchmark protocol, the sixth laboratory has no practical choice: reviewers expect
it, grant agencies reference it, and competing with non-comparable metrics becomes career-limiting.
The QWERTY keyboard, the POSIX standard, and ImageNet all followed this pattern. PWM is
positioned to be the first credible, comprehensive, and standardized evaluation infrastructure for
computational imaging—before the metal cools.

9.3 The Abundance Flywheel

The economic logic of PWM follows a self-reinforcing cycle, illustrated in fig. 2:
Each revolution of the flywheel lowers the marginal cost of adding a modality. The first 26 modalities
required PhD-level effort per operator; the next 40 should require only GPU-minutes per operator
as automated calibration pipelines mature.

9.4 The AlphaFold Parallel

table 10 draws an explicit structural comparison between the AlphaFold ecosystem and PWM.
The analogy is not superficial. AlphaFold Jumper et al. [2021] succeeded not because of a single
architectural innovation, but because CASP Moult [2005] provided a legible, recurring, trusted
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Table 10: Structural comparison: AlphaFold ecosystem vs. PWM. Both systems share
the same architecture—a shared task definition, a growing observability corpus, and a recurring
targeting mechanism—but operate in different physical domains.

Dimension AlphaFold Ecosystem PWM

Purpose Predict protein structure Calibrate & reconstruct
Task Taxonomy Sequence → 3D coordinates ExperimentSpec → validated recon.
Observability PDB (200K+ structures) 26-modality benchmark
Targeting CASP (biennial competition) LIP-Arena

Table 11: Quantified roadmap targets. L3 and L5 refer to standardization maturity levels as
defined in table 3.

Metric Current L3 Target L5 Target

Recovery ratio 0.22–1.0+ 80%+ 95%+
Oracle gap 5–12 dB ≤2 dB ≤0.5 dB
Modalities covered 64 100+ 200+
Zero-shot generalization 0% 50%+ 90%+

measurement of progress. PWM aims to provide the same function for computational imaging
through the Computational Imaging Standardization Project (CISP).

9.5 Quantified Targets

table 11 translates the roadmap into measurable milestones across four key performance indicators.
Recovery ratio ρ measures the fraction of the mismatch-induced degradation that is recovered by
operator correction, as defined in eq. (5); the range varies widely by modality (e.g., CASSI GAP-
TV ≈ 0.22 with Oracle Mask correction, reflecting the challenging nature of CASSI mismatch
correction—notably below the 0.30 safety brake threshold, which applies to arena submissions
rather than inherent modality limitations; CACTI > 1.0). Oracle gap is the PSNR difference
between Scenario I (Ideal) and Scenario III (Corrected). Zero-shot generalization measures re-
construction quality on a modality unseen during solver training, evaluated via the mask-sensitivity
spectrum transfer protocol.

9.6 Three-Phase Roadmap

We organize the path to standardization into three six-month phases:

Phase 1: Become the Default Evaluation Infrastructure (Months 1–6).

� pip install pwm-eval — a one-line entry point for any lab to reproduce our 26-modality
benchmark.

� Three replication packs (CASSI, SPC, CACTI) with frozen operator graphs, calibration meta-
data, and reference reconstructions.

� Five external laboratories independently validate the four-scenario evaluation protocol.

� The mask-sensitivity spectrum adopted as a standard diagnostic in at least two peer-reviewed
publications outside our group.
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Phase 2: Launch the CISP Public Competition (Months 7–12).

� cisp.pwm.org — a public leaderboard with automated scoring, inspired by CASP’s trans-
parent ranking.

� An independent steward board (minimum five institutions) governs test-set curation and
metric evolution.

� Blinded test sets: measurement data released without ground truth; reconstructions submit-
ted as sealed RunBundle archives.

� Four or more competition tracks spanning snapshot, video, spectral, and depth modalities.

Phase 3: Become the Action Network (Months 13–18).

� Robotic lab API — remote-triggered physical measurements that close the sim-to-real loop
automatically.

� Compute escrow — participating labs pledge GPU hours to a shared pool, drawn upon by
competition entrants.

� Calibration-as-a-service API—upload raw sensor data, receive a calibrated OperatorGraph
with uncertainty quantification.

� Outcome-based contracts — service-level agreements where payment is contingent on
achieving a specified PSNR/SSIM threshold on the client’s measurement.

The foundry window is finite. Within 18 months, the evaluation norms of computational imaging
will crystallize. The infrastructure laid in Phase 1 determines whether those norms are principled,
reproducible, and physics-aware—or whether the field continues to optimize solvers on idealized
simulations while real systems fail silently.

10 Call to Action

The infrastructure described in this paper is only as valuable as the community that stress-tests,
extends, and ultimately governs it. We outline concrete entry points for four audiences.

Professors. Co-steward the LIP-Arena evaluation tracks. Validate your group’s methods on the
four-scenario protocol (Ideal, Assumed, Corrected, Oracle Mask) and publish the full diagnostic
vector—not just the Scenario I PSNR that flatters every solver equally. Serve on the CISP steward
board and shape the metrics that will define the field for the next decade. The evaluation protocol
is designed to be extensible: if your modality is missing, proposing a new OperatorGraph template
earns co-authorship on the benchmark paper and a permanent seat at the standards table.

PhD Students. Join the calibration sprints. Pick one of the 64 registered modalities, measure
its mask-sensitivity spectrum on physical hardware, and contribute a row to the correction table
that currently spans 16 modalities. Each new row is a quantified, reproducible contribution—a
first-author publication opportunity in a subfield that did not exist two years ago. The toolchain
is open:
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pip install pwm-eval && pwm calibrate --modality <yours>

From installation to a publishable sensitivity curve takes one afternoon; from curve to a peer-
reviewed correction-factor paper takes one semester.

Hobbyists. Participate in the weekly SolveEverything challenges. Download a measurement set,
run your solver—classical, learned, or hybrid—and submit a RunBundle for automated scoring
against the blinded ground truth. The entire infrastructure is released under the MIT license: zero
institutional affiliation required, zero cost, zero barrier to entry. The leaderboard ranks results, not
credentials.

Investors. The flywheel economics described in section 9.3 create three revenue surfaces once
the standard achieves critical mass: calibration-as-a-service (upload raw sensor data, receive a
validated operator), pay-per-reconstruction APIs (submit a measurement, receive a reconstruction
with uncertainty bounds), and imaging SLAs (outcome-based contracts guaranteeing a minimum
PSNR/SSIM on the client’s hardware). The first evaluation standard adopted by five or more
laboratories locks in the market—not through intellectual-property moats, but through the network
effect of a shared benchmark. The competitive question is not whether this standard will emerge,
but who writes it.

11 Conclusion

We began with a paradox: computational imaging possesses solvers of extraordinary power—deep
unfolding networks that converge in seconds, diffusion priors that hallucinate plausible textures,
implicit representations that compress entire scenes into coordinate functions—yet real-world de-
ployments routinely fail. Reconstructions that achieve 35+dB on simulated benchmarks collapse
by 3.38–13.98 dB under realistic operator mismatch (table 1). The gap is not a solver problem. It
is an infrastructure problem.

For years, the field has been optimizing the wrong layer. It has poured resources into the train—
faster architectures, cleverer loss functions, larger training sets—while neglecting the rail : the
calibrated forward operators, standardized evaluation protocols, and diagnostic tools that determine
whether a solver’s theoretical performance survives contact with reality.

This paper introduced PWM, the Physics World Model, as the rail for computational imaging.
The contributions are concrete and measurable:

� 64 modalities formalized as composable OperatorGraph templates, each encoding the physics
of measurement rather than approximating it.

� 89 OperatorGraph templates that decompose forward models into calibratable, swap-
pable subgraphs—making operator correction a modular operation rather than a monolithic
reimplementation.

� The four-scenario evaluation protocol (Ideal / Assumed / Corrected / Oracle Mask),
which for the first time separates solver error from operator error and quantifies the recovery
ratio of any pipeline.

� LIP-Arena and the Triad Law, providing real-time leaderboard ranking and a diagnostic
framework that decomposes reconstruction failure into recoverability, carrier budget, and
operator mismatch components.
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The evidence is unambiguous. Across the 26-modality benchmark, operator correction alone
improved reconstruction quality by +0.54 to +48.25 dB across 9 correction configurations spanning
7 distinct modalities (16 registered)—gains that no solver upgrade can replicate. The CASSI deep-
dive was particularly revealing: the mismatch penalty (13.98 dB) exceeded the solver upgrade gain
(10.47 dB) by 1.34×. The bottleneck was never the algorithm. It was the physics encoding.

These results carry a temporal urgency. The foundry window described in section 9 is open
now but will not remain so. Within 18 months, the evaluation norms of computational imaging
will solidify—either around principled, physics-aware infrastructure, or around the fragmented,
simulation-only benchmarks that have defined the field to date. The QWERTY effect guarantees
that whichever protocol is adopted first by a critical mass of laboratories will become permanent.

A problem is solved when the bottleneck shifts from genius to compute. PWM provides the infras-
tructure for that shift.
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