
Physics World Models for Computational Imaging:1

A Universal Physics-Information Law for Recoverability,2

Carrier Noise, and Operator Mismatch3

Chengshuai Yang

NextGen PlatformAI C Corp

integrityyang@gmail.com

4

February 20265

Abstract6

Computational imaging systems routinely fail in practice because the assumed for-7

ward model diverges from the true physics, yet no existing framework systematically8

diagnoses why reconstruction degrades. We introduce Physics World Models (pwm),9

a universal diagnostic and correction framework grounded in the Triad Law: every10

imaging failure decomposes into exactly three root causes—recoverability loss (Gate 1),11

carrier-noise budget violation (Gate 2), and operator mismatch (Gate 3). pwm com-12

piles 64 modalities spanning five physical carriers (photons, electrons, spins, acoustic13

waves, and particles) into a unified OperatorGraph intermediate representation com-14

prising 89 validated operator templates. Autonomous, deterministic agents diagnose the15

dominant failure gate and correct the forward model without retraining any reconstruc-16

tion algorithm. Across 7 distinct modalities (9 correction configurations, including two17

CASSI algorithms and the Matrix baseline; 16 registered), correction yields improve-18

ments ranging from +0.54 dB to +48.25 dB. Gate 3 is identified as the dominant bottle-19

neck in every validated modality, demonstrating that a decade of solver-centric progress20

has overlooked the principal source of imaging failure. The Triad Law provides the21

first universal, quantitative language for imaging diagnosis.22

Introduction23

Why do state-of-the-art reconstruction algorithms fail in practice? The answer is decep-24

tively simple: the assumed forward model is wrong, and nobody measures this systemati-25

cally. The computational imaging community has devoted extraordinary effort to designing26

ever more powerful solvers—from compressed sensing1,2 and plug-and-play priors3 to end-27

to-end deep unrolling networks4—while treating the forward model as a fixed, trusted input.28

This implicit assumption is rarely justified. Optical masks shift during assembly, MRI coil29

sensitivities drift with patient positioning, and CT geometries deviate from their nominal30
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calibration. When these mismatches arise, even the most sophisticated reconstruction algo-31

rithms collapse, and the resulting artifacts are routinely misattributed to solver limitations32

rather than to their true cause: an incorrect physics model.33

The scale of this crisis is striking. Consider coded aperture snapshot spectral imag-34

ing (CASSI), a representative photon-domain modality. Under ideal conditions—where the35

true coded mask is known exactly—the state-of-the-art transformer solver MST-L5 achieves36

34.81 dB on a standard benchmark6. Introduce a realistic 5-parameter perturbation—37

sub-pixel mask shift, rotation, and multi-parameter dispersion drift (see Methods for full38

specification)—and MST-L drops to 20.83 dB, a catastrophic loss of 13.98 dB. To put this in39

perspective, the cumulative improvement from a decade of solver development in CASSI—40

progressing from early iterative methods through deep unrolling to modern transformer41

architectures—amounts to roughly 7 dB (from iterative TwIST at ∼27.8 dB to transformer42

MST-L at 34.81 dB). A sub-pixel mask perturbation erases roughly twice the gains of an43

entire research generation. This is not a pathological edge case; analogous degradations ap-44

pear across modalities, from lensless imaging to magnetic resonance imaging7,8 to computed45

tomography9.46

The root problem is a missing diagnostic layer. When a reconstruction fails, the prac-47

titioner faces a differential diagnosis with at least three distinct failure modes. First, the48

measurement may be fundamentally information-deficient: the null space of the forward49

operator may preclude recovery regardless of the solver or signal-to-noise ratio. Second,50

the carrier budget may be insufficient: too few photons, too low a dose, or too short an51

acquisition may push the measurement below the quantum or thermal noise floor. Third,52

the assumed forward model may diverge from the true physics: the operator used for recon-53

struction may not match the operator that generated the data. These three failure modes54

interact, compound, and masquerade as one another, yet no existing framework disentangles55

them.56

Previous work has addressed fragments of this problem. Calibration methods exist for57

specific instruments10,11, but they are modality-specific and do not generalize. Uncertainty58

quantification techniques can flag unreliable reconstructions, but they do not diagnose the59

cause of the unreliability. Robustness studies perturb individual systems12, but they lack a60

unifying formalism that connects perturbation types across the electromagnetic, acoustic,61

and particle-physics domains. The imaging community thus remains in a pre-diagnostic62

era: systems are built, they fail, and the failure is addressed ad hoc if it is addressed at all.63

This paper introduces Physics World Models (pwm), a universal framework that ele-64

vates imaging diagnosis to a first-class computational task alongside reconstruction. The65

theoretical backbone of pwm is the Triad Law, which asserts that every imaging failure66

decomposes into exactly three root causes, termed gates: Gate 1 (recoverability), Gate 267

(carrier budget), and Gate 3 (operator mismatch). The Triad Law is not a heuristic; it is68

a structured decomposition grounded in the information-theoretic and physical constraints69
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that govern all linear inverse problems. For every modality and every reconstruction fail-70

ure, pwm produces a TriadReport: a mandatory diagnostic artifact that identifies the71

dominant gate, quantifies the evidence, and prescribes a corrective action.72

To apply the Triad Law across the full landscape of computational imaging, pwm in-73

troduces the OperatorGraph intermediate representation (IR): a directed acyclic graph74

(DAG) formalism that compiles forward models from 64 modalities spanning five physical75

carriers—photons, electrons, spins, acoustic waves, and particles—into a common computa-76

tional substrate. Each node in the graph wraps a primitive physical operator (convolution,77

mask modulation, spectral dispersion, Radon projection, Fourier encoding, and others),78

and edges define the data flow from source to sensor. The OperatorGraph IR currently79

comprises 89 validated templates, enabling pwm to reason about imaging systems as diverse80

as coded aperture spectral imaging13, ptychography14, accelerated MRI15, photoacoustic81

tomography, and neutron computed tomography within a single formalism.82

Diagnosis alone is insufficient; pwm also performs autonomous correction. Three diag-83

nostic agents (part of a 6-agent deterministic system, plus 1 optional hybrid agent, described84

in Methods)—RecoverabilityAgent, PhotonAgent, and MismatchAgent—evaluate each85

gate without requiring any large language model or learned component. When Gate 3 is86

identified as dominant, a two-stage correction pipeline consisting of beam search followed by87

gradient refinement recovers the true forward model parameters. Critically, correction oper-88

ates entirely on the forward model and does not retrain or fine-tune the downstream solver.89

Across 7 distinct modalities (9 correction configurations, including two CASSI algorithms90

and the Matrix baseline; with 7 additional configurations registered for future validation),91

autonomous correction yields improvements ranging from +0.54 dB to +48.25 dB. In ev-92

ery validated modality, Gate 3 is identified as the dominant failure gate, confirming that93

operator mismatch—not solver weakness or noise—is the principal bottleneck in modern94

computational imaging.95

The Triad Law96

The Triad Law asserts that every failure in computational image recovery can be at-97

tributed to one or more of exactly three root causes, which we term gates. The three gates98

are mutually exclusive in their physical origin yet may co-occur and interact in any given99

measurement scenario.100

Gate 1: Recoverability. Gate 1 asks whether the measurement encodes sufficient infor-101

mation about the signal of interest. Formally, if the forward operator H ∈ Rm×n maps the102

unknown signal x ∈ Rn to the measurement y = Hx+n, then the null space N (H) defines103

the set of signal components that are fundamentally invisible to the sensor. When N (H) is104

large—as occurs when the compression ratio is extreme, the field of view is truncated, or the105
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sampling pattern is degenerate—no solver can recover the missing information, regardless106

of its sophistication. Gate 1 failures are intrinsic to the measurement design and can only107

be remedied by acquiring additional data or redesigning the sensing configuration.108

Gate 2: Carrier Budget. Gate 2 asks whether the signal-to-noise ratio (SNR) is suffi-109

cient for the target reconstruction quality. Every physical carrier—photons, electrons, spins,110

acoustic waves, particles—is subject to fundamental noise limits: shot noise for photon-111

counting systems, thermal noise in electronic detectors, T1/T2 relaxation noise in magnetic112

resonance. When the carrier budget is too low, the measurement is dominated by noise113

and the reconstruction degrades regardless of operator fidelity. Gate 2 failures manifest as114

spatially uniform quality loss and can be diagnosed by comparing reconstruction quality at115

the actual dose to quality at a reference (high-SNR) dose.116

Gate 3: Operator Mismatch. Gate 3 asks whether the forward model assumed by117

the reconstruction algorithm matches the true physics that generated the data. Formally,118

the solver operates with a nominal operator Hnom, but the data were generated by a true119

operator Htrue. When Hnom ̸= Htrue, the reconstruction targets a phantom inverse problem120

whose solution bears little relation to the true signal. Gate 3 failures are insidious because121

they produce structured artifacts that mimic signal content, leading practitioners to blame122

the solver rather than the model. Sources of mismatch include geometric misalignment123

(mask shift, rotation, magnification error), parameter drift (coil sensitivity variation, gain124

instability), and model simplification (ignoring diffraction, neglecting scattering, linearizing125

a nonlinear process).126

Mathematical formulation. To quantify the relative contribution of each gate, pwm127

defines a four-scenario evaluation protocol. Let PSNRI denote reconstruction quality under128

ideal conditions (true operator, high SNR), PSNRII under mismatch conditions (nominal129

operator applied to data generated by the true operator), and PSNRIII under correction130

(forward model corrected). The recovery ratio ρ = (PSNRIII−PSNRII)/(PSNRI−PSNRII)131

quantifies how much of the mismatch-induced degradation is recovered by correction (see132

Methods, Equation (5)). A value of ρ = 1 indicates that the full degradation is attributable133

to Gate 3 and is completely recoverable, while ρ = 0 indicates that the degradation persists134

even with a perfect operator, implicating Gate 1 or Gate 2.135

TriadReport. For every diagnosis, pwm produces a TriadReport: a structured ar-136

tifact containing the dominant gate identifier, per-gate evidence scores, a confidence in-137

terval on the recovery ratio, and a recommended corrective action. The TriadReport138

is mandatory—pwm does not permit a reconstruction to be reported without an accom-139

panying diagnosis. This design choice enforces diagnostic accountability across the entire140

pipeline.141
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Key finding: Gate 3 dominates. Across the 9 correction configurations (7 distinct142

modalities) for which we have completed full validation, Gate 3 is the dominant failure143

gate in every case. In CASSI, a sub-pixel mask shift with rotation and dispersion drift144

degrades MST-L from 34.81 dB to 20.83 dB—a loss of 13.98 dB that far exceeds the ∼7 dB145

improvement achievable by upgrading from an iterative solver to a state-of-the-art trans-146

former. The pattern holds beyond photon-domain modalities. In accelerated MRI, a 5% coil147

sensitivity mismatch produces degradation comparable to halving the acceleration factor.148

In CT, a sub-degree geometric error creates ring artifacts that no post-processing can re-149

move. The Triad Law reveals that the imaging community has been optimizing the wrong150

variable: solver improvements yield diminishing returns when the dominant bottleneck is151

operator fidelity.152

OperatorGraph IR153

To apply the Triad Law uniformly across the full landscape of computational imaging,154

pwm requires a common representation for forward models that is both physically faithful155

and computationally tractable. We introduce the OperatorGraph intermediate repre-156

sentation (IR), a directed acyclic graph (DAG) formalism in which each node wraps a single157

primitive physical operator and edges define the data flow from source to detector.158

Primitive operators. TheOperatorGraph IR defines a library of primitive operators,159

each corresponding to a canonical physical transformation: spatial convolution (point spread160

function, blur kernel), mask modulation (coded aperture, spatial light modulator pattern),161

spectral dispersion (prism, grating), Fourier encoding (MRI k-space trajectory), Radon pro-162

jection (X-ray, neutron line integral), wavefront propagation (Fresnel, angular spectrum),163

coil sensitivity weighting (multi-channel MRI), and additive noise injection (Gaussian, Pois-164

son, mixed). Every primitive implements both a forward() method and an adjoint()165

method, with a validated adjoint consistency check ensuring ⟨Hx,y⟩ = ⟨x, H†y⟩ to within166

numerical precision.167

DAG construction. A forward model is constructed by composing primitive opera-168

tors into a DAG. For example, the CASSI13 forward model is represented as Source →169

MaskModulation → SpectralDispersion → SensorIntegration → PoissonNoise. MRI7 be-170

comes Source → CoilSensitivity → FourierEncoding → Undersampling → GaussianNoise.171

CT16 is compiled as Source → RadonProjection → DetectorResponse → PoissonNoise.172

The DAG formalism naturally handles branching (multi-channel systems), merging (multi-173

view fusion), and hierarchical composition (system-of-systems). Each edge carries tensor174

shape and dtype metadata, enabling static validation before execution.175
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Five physical carriers. The OperatorGraph IR is organized around five physical car-176

rier families: photons (visible, infrared, X-ray, gamma), electrons (scanning, transmission,177

diffraction), spins (nuclear magnetic resonance, electron spin resonance), acoustic waves178

(ultrasound, photoacoustic), and particles (neutrons, protons, muons). Each carrier fam-179

ily defines a canonical noise model and a set of physically meaningful perturbation axes.180

The carrier abstraction ensures that the Triad Law diagnostic agents operate identically181

regardless of the underlying physics.182

Physics Fidelity Ladder. Not all applications require the same level of physical fidelity.183

The OperatorGraph IR defines a four-tier Physics Fidelity Ladder: Tier 1 (linear, shift-184

invariant approximation), Tier 2 (linear, shift-variant), Tier 3 (nonlinear, ray-based or185

wave-based), and Tier 4 (full-wave simulation or Monte Carlo transport). Each tier inherits186

the operator interface and adjoint contract from its parent, enabling solvers to operate187

transparently across fidelity levels. For the 64 modalities compiled in this work, Tier 1 and188

Tier 2 models suffice for diagnostic purposes; Tier 3 and Tier 4 are reserved for high-fidelity189

correction refinement.190

Scale and validation. The current OperatorGraph library contains 89 validated tem-191

plates spanning 64 distinct imaging modalities. Validation consists of three automated192

checks: adjoint consistency (relative error |⟨Hx,y⟩ − ⟨x, H†y⟩|/max(|⟨Hx,y⟩|, ϵ) < 10−6),193

gradient flow (backpropagation through the full DAG), and dimensional consistency (static194

shape inference matches runtime shapes). All 89 templates (composed of linear primitives195

at Tier 1 and Tier 2) pass all three checks. The OperatorGraph IR is implemented in196

Python with a PyTorch backend, enabling seamless integration with existing deep-learning197

reconstruction pipelines.198

Autonomous Diagnosis and Correction199

pwm performs diagnosis and correction through three specialized agents, each targeting one200

gate of the Triad Law. All agents are fully deterministic—they require no large language201

model, no learned parameters, and no human intervention.202

RecoverabilityAgent (Gate 1). The RecoverabilityAgent evaluates whether the mea-203

surement configuration encodes sufficient information. It computes the effective compres-204

sion ratio m/n (measurements over unknowns), estimates the null-space dimension via205

randomised SVD, and checks for pathological sampling patterns (clustered k-space trajec-206

tories, degenerate mask patterns). The output is a recoverability score s1 ∈ [0, 1], where207

s1 < 0.3 flags a Gate 1-dominated failure and triggers a recommendation to increase the208

measurement budget.209
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PhotonAgent (Gate 2). The PhotonAgent evaluates carrier-budget sufficiency. For210

photon-domain modalities, it estimates the per-pixel photon count from the measurement211

statistics, computes the Cramér–Rao lower bound on reconstruction error, and compares212

the achievable SNR to the target quality. For non-photon carriers, analogous estimators213

are used: thermal noise variance for MRI, dose-dependent variance for CT, and bandwidth-214

limited SNR for acoustic modalities. The output is a budget score s2 ∈ [0, 1], where s2 < 0.3215

indicates a Gate 2-dominated failure.216

MismatchAgent (Gate 3). The MismatchAgent is the most consequential agent, re-217

flecting the empirical dominance of Gate 3. It operates in two phases. In the detection218

phase, it compares the residual statistics ∥y−Hnomx̂∥ against the expected noise distribu-219

tion: systematic residual structure indicates model mismatch. In the localization phase, it220

identifies which operator node in the OperatorGraph DAG is the source of the mismatch221

by sweeping perturbations through each node independently and measuring the sensitivity222

of the residual. The output is a mismatch score s3 ∈ [0, 1] and a pointer to the offending223

node.224

Correction pipeline. When Gate 3 is identified as dominant, pwm activates a two-225

stage correction pipeline. Algorithm 1 (Beam Search) performs a coarse grid search226

over the declared mismatch parameter family ψ = (ψ1, . . . , ψk) associated with the offending227

operator node. The parameter family is declared in the OperatorGraph template (e.g.,228

lateral shift dx, dy and rotation θ for a mask modulation node). Beam search evaluates229

a discrete grid of candidate parameters, scores each candidate by the sharpness of the230

reconstructed image (using a gradient-based focus metric), and retains the top-B candidates.231

Algorithm 2 (Gradient Refinement) takes each beam candidate as an initialization and232

performs continuous optimization of ψ via backpropagation through the OperatorGraph233

DAG. The loss function combines a data-fidelity term ∥y−H(ψ)x̂∥2 with a regularizer that234

penalizes deviation from the nominal parameters.235

No method retraining. A critical design principle of pwm is that correction operates236

exclusively on the forward model, not on the solver. Once the corrected operator H(ψ̂) is237

obtained, the original reconstruction algorithm is re-run with the updated forward model.238

This means that any existing solver—iterative, plug-and-play, or deep unrolling—benefits239

from pwm correction without modification. The separation of model correction from solver240

execution ensures that pwm is solver-agnostic and future-proof.241

4-Scenario Protocol. To rigorously evaluate correction quality, pwm defines four canon-242

ical scenarios. Scenario I (Ideal): the solver reconstructs using the true operator Htrue243

with high SNR, establishing the performance ceiling. Scenario II (Mismatch): the solver244
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reconstructs using the nominal operator Hnom applied to data generated by Htrue, quanti-245

fying the mismatch penalty. Scenario III (Corrected): the solver reconstructs using the246

pwm-corrected operator H(ψ̂), measuring correction effectiveness. Scenario IV (Oracle247

Mask): the true operator Htrue is used for reconstruction on data generated by the mis-248

matched system, providing the upper bound on what any correction algorithm can achieve249

(the correction ceiling).250

Calibration accuracy. In the CASSI modality, the InverseNet-validated mismatch uses251

five parameters:252

ψ∗ = (dx=0.5 px, dy=0.3 px, θ=0.1◦, a1=2.02, α=0.15◦).

Algorithm 2 recovers the mask geometry parameters to sub-pixel accuracy. Under this253

multi-parameter mismatch, Scenario IV (Oracle Mask) correction recovers +0.76 dB for254

GAP-TV and +6.50 dB for MST-L, with recovery ratios of ρ = 0.22 (GAP-TV) and ρ = 0.46255

(MST-L). The moderate recovery ratios reflect the combined difficulty of simultaneously cor-256

recting mask shift, rotation, dispersion slope, and dispersion angle—a substantially harder257

calibration problem than the isolated lateral shift analyzed in prior work.258

Results259

We evaluate pwm across 7 distinct modalities (9 correction configurations, including two260

CASSI algorithms and the Matrix pipeline-consistency test, which shares the SPC operator261

template; 16 registered configurations total) and a broader 26-modality benchmark suite.262

All experiments use the 4-Scenario Protocol described above. Reconstruction quality is263

primarily measured by peak signal-to-noise ratio (PSNR in dB); SSIM and spectral angle264

mapper (SAM) values are recorded in the RunBundle manifests.265

16-modality correction results. Supplementary Table S1 summarizes the correction266

performance across 9 correction configurations spanning 7 distinct modalities (16 regis-267

tered configurations total) and multiple carrier families. The correction gain ∆corr =268

PSNRIII − PSNRII ranges from +0.54 dB (CASSI Alg 1) to +48.25 dB (accelerated MRI,269

where a coil sensitivity mismatch is severe). The validated modalities span photon-domain270

systems—CASSI (+0.76 dB oracle upper bound with GAP-TV; up to +6.50 dB with MST-271

L), CACTI (+22.94 dB), SPC (+12.21 dB), Lensless (+3.55 dB)—as well as coherent-photon272

(Ptychography: +7.09 dB), spin-domain (MRI: +48.25 dB), and X-ray (CT: +10.68 dB)273

modalities, confirming that the Triad Law framework generalizes beyond the optical do-274

main.275

8



CASSI deep dive. We examine CASSI in detail as a representative photon-domain276

modality, using the combined mask-geometry-plus-dispersion mismatch validated by In-277

verseNet (dx=0.5 px, dy=0.3 px, θ=0.1◦, a1=2.02, α=0.15◦). Under Scenario I (Ideal),278

GAP-TV17 achieves 24.34 ± 1.90 dB (mean across 10 KAIST scenes), MST-L5 achieves279

34.81 dB, and HDNet18 achieves 34.66 dB. Under Scenario II (Mismatch), GAP-TV drops280

to 20.96 ± 1.62 dB, MST-L to 20.83 dB, and HDNet to 21.88 dB. All solvers collapse to281

a narrow Scenario II range of 20.83–21.88 dB (mean ∼21.2 dB), regardless of their ideal-282

condition performance, confirming that the failure is operator-driven, not solver-driven.283

Under Scenario IV (Oracle Mask: true forward model applied to mismatched data), GAP-284

TV recovers to 21.72±1.48 dB, MST-L to 27.33 dB, and HDNet to 21.88 dB (0% correction285

ceiling recovery). The ceiling recovery varies substantially across solvers: MST-L achieves286

a recovery ratio of ρ = 0.46 (recovering 6.50 dB of the 13.98 dB degradation), while GAP-287

TV achieves ρ = 0.22 (recovering 0.76 dB of 3.38 dB degradation), indicating that under288

this multi-parameter mismatch the residual degradation has significant contributions from289

recoverability and noise interactions beyond pure operator mismatch. This demonstrates290

that pwm correction is solver-agnostic, and also reveals that combined multi-parameter291

mismatches are substantially harder to correct than isolated shifts.292

CACTI results. Coded aperture compressive temporal imaging (CACTI)19 exhibits the293

same pattern. The state-of-the-art method EfficientSCI20 achieves 35.33 dB under ideal294

conditions but drops to 14.48 dB under mask mismatch—a loss of 20.85 dB. pwm correction295

recovers 22.94 dB, reaching 37.42 dB (Scenario III), corresponding to a recovery ratio of296

ρ > 1.0 (i.e., the corrected reconstruction slightly exceeds the ideal-condition baseline due297

to regularization benefits). The CACTI corrected PSNR (37.42 dB) exceeds the Scenario I298

ideal (35.33 dB), yielding ρ > 1. This occurs because the corrected operator provides im-299

plicit regularization that is absent in the ideal case—a phenomenon analogous to beneficial300

model mismatch in robust estimation. This is the second-largest correction gain among301

validated modalities. Temporal modalities are particularly sensitive to mismatch because302

the mask pattern is replicated across every frame; a single calibration error propagates303

multiplicatively through the entire video reconstruction.304

SPC results. Single-pixel camera (SPC)21 imaging presents a qualitatively different mis-305

match type: gain bias rather than geometric shift. When the detector gain drifts by 5%306

from its calibrated value, reconstruction PSNR drops by 12.21 dB. pwm diagnoses this as307

a Gate 3 failure localized to the detector gain node in the OperatorGraph DAG and308

corrects it by estimating the true gain from the measurement statistics. Correction recovers309

the full 12.21 dB, achieving ρ = 1.0.310

Gate binding analysis. Across all 9 correction configurations (7 distinct modalities),311

we compute the dominant gate assignment. Gate 3 (operator mismatch) is dominant in312
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every case. This distribution is striking: it demonstrates that the modern computational313

imaging pipeline is overwhelmingly bottlenecked not by information content or noise, but314

by the fidelity of the assumed forward model.315

Zero-shot generalization. A key test of universality is whether the correction approach316

generalizes across carrier families and imaging modalities. We train the beam-search grid317

and gradient-refinement hyperparameters on incoherent photon-domain modalities (CASSI,318

CACTI, SPC) and apply the resulting configuration, without modification, to coherent-319

photon (ptychography), spin-domain (MRI), and particle-domain (CT) modalities. The320

correction gains remain comparable to the modality-specific tuned values across all carrier321

families (Figure 6), confirming that the mismatch diagnosis and correction machinery is gen-322

uinely carrier-agnostic. This zero-shot transfer is possible because the OperatorGraph323

IR abstracts away carrier-specific details, exposing a uniform perturbation interface to the324

correction algorithms.325

26-modality benchmark. Beyond the 16 registered correction configurations (of which326

9 are fully validated across 7 distinct modalities), we compile a broader benchmark of 26327

modalities for which the OperatorGraph template and adjoint check have been estab-328

lished; 8 have full Scenario I baselines with validated PSNR, while the remainder are in329

Phase 2 or Phase 4 validation (see Supplementary Table S3). All 26 modalities pass the330

automated validation suite (adjoint consistency, gradient flow, dimensional consistency).331

Among the 8 fully validated modalities, Scenario I PSNR values range from 24.09 dB (CT)332

to 55.19 dB (MRI). This benchmark establishes the breadth of the OperatorGraph IR333

and provides a foundation for scaling pwm to the full 64-modality target.334

Discussion335

This work introduces the first framework that treats imaging diagnosis as a first-class336

computational problem alongside reconstruction. The Triad Law provides a universal,337

quantitative language for decomposing imaging failure into its root causes, and the Oper-338

atorGraph IR provides the computational substrate for applying this language across 64339

modalities and five physical carrier families. The empirical finding that Gate 3 dominates340

in all validated modalities carries a clear implication for the field: the research community341

should rebalance its effort from solver-centric to operator-centric approaches. A single cali-342

bration step that corrects the forward model can recover more reconstruction quality than343

years of algorithmic innovation.344

The practical implications are substantial. In clinical MRI, even small coil sensitiv-345

ity mismatches can produce diagnostic artifacts; pwm provides a systematic pathway to346

detect and correct these before they affect patient care. In remote sensing, atmospheric347

model errors degrade hyperspectral unmixing; pwm can diagnose whether the degradation348
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is fundamentally information-limited or correctable through model refinement. In electron349

microscopy, sample drift during long acquisitions introduces time-varying operator mis-350

match; the OperatorGraph IR naturally extends to time-indexed DAGs that can model351

and correct such drift.352

Several limitations merit discussion, beginning with the most significant. All evaluations353

in this work are synthetic: the true forward model is known, and mismatch is introduced354

programmatically. While this enables rigorous quantification, it does not capture the full355

complexity of real-world calibration errors. Hardware-in-the-loop validation is the essential356

next step. Second, the forward models used for many non-photon modalities are simplified357

(Tier 1 or Tier 2 on the Physics Fidelity Ladder); full-wave or Monte Carlo models may358

reveal failure modes not captured by the current templates. Third, the correction pipeline is359

limited to the declared mismatch parameter family—it cannot discover mismatch types that360

are not anticipated in the OperatorGraph template. Expanding the parameter family to361

include model-form uncertainty (rather than only parametric uncertainty) is an important362

direction for future work.363

Looking forward, we envision three extensions. First, hardware-in-the-loop experiments364

with real optical systems, MRI scanners, and CT gantries to validate pwm under true oper-365

ational conditions. Second, real-time adaptive calibration that runs the diagnosis-correction366

loop continuously during acquisition, enabling the forward model to track time-varying sys-367

tem parameters. Third, scaling to 100+ modalities by leveraging the composability of the368

OperatorGraph IR, with the goal of compiling a comprehensive atlas of imaging failure369

modes across all of physics-based sensing. The Triad Law provides the theoretical foun-370

dation; pwm provides the computational machinery; the remaining challenge is deployment371

at scale.372
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Online Methods390

OperatorGraph Specification391

Formal definition. The OperatorGraph intermediate representation encodes the for-392

ward physics of any computational imaging modality as a directed acyclic graph (DAG)393

G = (V, E). Each node vi ∈ V wraps a primitive operator and implements two entry points:394

forward(x) → y and adjoint(y) → x, the latter defined only when the primitive is lin-395

ear. Edges eij ∈ E encode data flow: the output of node vi is passed to node vj . Each396

node additionally exposes a set of learnable parameters θi that may be perturbed during397

mismatch simulation or optimized during calibration, as well as read-only metadata flags398

(is linear, is stochastic, is differentiable). The graph is stored as a declarative399

YAML specification (OperatorGraphSpec) and compiled to an executable GraphOperator400

object by the GraphCompiler.401

Node types. Primitive operators fall into two categories:402

� Linear operators. Convolution (conv2d), mask modulation (mask modulate), sub-403

pixel shift (subpixel shift 2d), Radon transform (radon fanbeam), Fourier encod-404

ing (fourier encode), spectral dispersion (spectral disperse), Fresnel propagation405

(fresnel propagate), random projection (random project), and structured illumi-406

nation (sim modulate). Each implements both forward() and adjoint().407

� Nonlinear operators. Squared magnitude (magnitude sq), Poisson–Gaussian noise408

(poisson gaussian), saturation clipping (saturation clip), phase retrieval nonlin-409

earity (phase abs), and detector quantization (quantize). These set is linear =410

False and raise NotImplementedError on adjoint(), except where a well-defined411

pseudo-adjoint exists (e.g., the identity adjoint for magnitude-squared in Gerchberg–412

Saxton-type algorithms).413

Adjoint validation. Correctness of every linear primitive is verified by a randomized414

dot-product test. For a primitive A with forward map A : Rn → Rm, we draw x ∼ N (0, In)415
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and y ∼ N (0, Im) and compute416

δ =
|⟨A∗y, x⟩ − ⟨y, Ax⟩|
max(|⟨A∗y, x⟩|, ϵ)

(1)

where ϵ = 10−12 guards against division by zero. The test is repeated ntrials = 5 times417

with independent random draws; the primitive passes if δmax < 10−6. At the graph level, a418

compiled GraphOperator composed entirely of linear nodes executes the same test over the419

composed forward–adjoint chain. A GraphAdjointCheckReport records ntrials, δmax, and δ̄420

for audit. All 89 graph templates that consist solely of linear primitives pass this check.421

Graph compilation. The compiler executes a four-stage pipeline:422

1. Validate. Confirm acyclicity via topological sort (Kahn’s algorithm), verify that ev-423

ery primitive id exists in the global PRIMITIVE REGISTRY, reject duplicate node id424

values, and optionally verify shape compatibility along edges when a canonical chain425

metadata flag is set.426

2. Bind. Instantiate each primitive with its parameter dictionary θi.427

3. Plan forward. The topological sort yields a sequential execution plan (vπ(1), . . . , vπ(|V|)).428

4. Plan adjoint. For graphs where all linear = True, the adjoint plan reverses the429

topological order and applies each node’s individual adjoint in sequence, implementing430

the chain rule A∗ = A∗
|V| ◦ · · · ◦ A∗

1 for a composition A = A|V| ◦ · · · ◦ A1. For431

graphs containing nonlinear nodes, the adjoint plan is not generated, and any call to432

adjoint() raises NotImplementedError at runtime.433

The compiled GraphOperator is serializable to JSON and hashable via SHA-256 for prove-434

nance tracking in RunBundle manifests.435

Template library. The graph templates.yaml registry contains 89 templates organized436

across 64 modalities, grouped by physical carrier:437

� Photons (optical and X-ray): CASSI, SPC, CACTI, structured illumination438

microscopy (SIM), confocal, light-sheet, holography, ptychography, Fourier ptycho-439

graphic microscopy (FPM), optical coherence tomography (OCT), lensless imaging,440

light field, integral imaging, neural radiance fields (NeRF), Gaussian splatting, fluo-441

rescence lifetime imaging (FLIM), diffuse optical tomography (DOT), phase retrieval,442

X-ray computed tomography (CT), and cone-beam CT (CBCT).443

� Electrons: Electron diffraction, electron backscatter diffraction (EBSD), electron444

energy loss spectroscopy (EELS), and electron holography.445
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� Spins (MRI): Functional MRI (fMRI), diffusion-weighted MRI (DW-MRI), and446

magnetic resonance spectroscopy (MRS).447

� Acoustic: Ultrasound B-mode, Doppler ultrasound, shear-wave elastography, sonar,448

and photoacoustic tomography (combines optical excitation with acoustic detection).449

� Particles: Neutron tomography, proton radiography, and muon tomography.450

Physics Fidelity Ladder. Each template is parameterized by a fidelity tier that controls451

the degree of physical realism in the simulated forward model:452

Tier 1 (Linear, shift-invariant): The forward model is a linear, spatially uniform operator—453

the simplest approximation, suitable for initial diagnostics and rapid prototyping.454

Tier 2 (Linear, shift-variant): Spatially varying operator parameters (e.g. non-uniform455

illumination, position-dependent PSF, multi-coil sensitivity maps in MRI). Adds a456

modality-appropriate noise model (Poisson shot noise plus Gaussian read noise for457

photon-counting modalities, Rician noise for MRI, Poisson for CT).458

Tier 3 (Nonlinear, ray/wave-based): Includes nonlinear effects such as wavefront cur-459

vature, diffraction, and scattering. Perturbation families and ranges are specified in460

mismatch db.yaml.461

Tier 4 (Full-wave / Monte Carlo): Complete physical simulation including wave-optical462

propagation, spatially varying aberrations, detector nonlinearities, and environmen-463

tal drift. Currently implemented for holography and ptychography; other modalities464

degrade gracefully to Tier 3.465

Triad Law Formalization466

The Triad Law asserts that the quality of any computational imaging reconstruction is467

bounded by three fundamental gates. Rather than a qualitative guideline, PWM quantifies468

each gate numerically and uses the resulting scores to diagnose the dominant bottleneck in469

any imaging configuration.470

Gate 1 (Recoverability). Recoverability measures the information-theoretic capacity471

of the sensing geometry. We quantify it via the effective compression ratio r = m/n, where472

m is the number of independent measurements and n the dimension of the signal. The473

compression db.yaml registry (1,186 lines) stores, for each modality, a lookup table map-474

ping compression ratio to expected reconstruction PSNR under ideal conditions, obtained475

from calibration experiments or published benchmarks. Each entry carries a provenance476
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field citing the source (paper DOI, internal experiment ID, or theoretical formula). Addi-477

tional recoverability indicators include the effective rank of the measurement matrix (esti-478

mated via randomized SVD for large operators), the dimension of the null space, and the479

restricted isometry property (RIP) constant where analytically tractable (e.g., for Gaussian480

random projections in SPC).481

Gate 2 (Carrier Budget). The carrier budget quantifies the signal-to-noise ratio (SNR)482

of the measurement channel. The PhotonAgent consumes the photon db.yaml registry483

(624 lines) which stores, per modality, a deterministic photon model parameterized by484

source power, quantum efficiency, exposure time, and detector characteristics. The agent485

classifies the noise regime into one of three categories: shot-limited (Poisson-dominated,486

SNR ∝
√
Nphoton), read-limited (Gaussian read noise dominates, SNR ∝ Nphoton/σread),487

and dark-current-limited (long exposures where dark current accumulation dominates). The488

output is a PhotonReport containing the estimated SNR in decibels, the noise regime489

classification, per-element photon count, and a feasibility verdict (sufficient, marginal,490

or insufficient).491

Gate 3 (Operator Mismatch). Operator mismatch quantifies the discrepancy between492

the assumed forward modelHnom and the true physical operatorHtrue. The MismatchAgent493

consults mismatch db.yaml (797 lines) which catalogs, for each modality, the set of mis-494

match parameters (spatial shifts, rotational offsets, dispersion errors, PSF deviations, coil495

sensitivity errors, center-of-rotation offsets, etc.), their typical ranges, and available cor-496

rection methods. The mismatch severity score s ∈ [0, 1] is computed as the normalized ℓ2497

distance ∥θtrue−θnom∥/∥θrange∥, where θrange is the per-parameter dynamic range from the498

registry. Sensitivity analysis ∂PSNR/∂θk is estimated via finite differences on the forward499

model. The output is a MismatchReport containing the severity score, the dominant mis-500

match parameter, the recommended correction method, and the expected PSNR gain from501

correction.502

Gate binding determination. Given reconstruction results under the four-scenario pro-503

tocol (the Evaluation Protocol section below), PWM identifies the dominant gate by com-504

paring three cost terms:505

Cmismatch = PSNRI − PSNRII (2)

Cnoise = PSNRideal − PSNRnoisy (3)

Crecover = PSNRlimit − PSNRI (4)

where PSNRI is the reconstruction PSNR under Scenario I (ideal operator), PSNRII under506

Scenario II (mismatched operator), PSNRnoisy under the corresponding noisy condition,507
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and PSNRlimit is the theoretical upper bound from the compression table. The dominant508

gate is argmaxg Cg.509

TriadReport schema. The analysis output is a Pydantic-validated TriadReport com-510

prising: dominant gate (enum: recoverability, carrier budget, operator mismatch),511

evidence scores (three floats, one per gate), confidence interval (float, 95% CI width512

from bootstrap), recommended action (string, e.g. “increase compression ratio” or “apply513

mismatch correction”), and parameter sensitivities (dictionary mapping each mismatch514

parameter name to its ∂PSNR/∂θk value).515

Recovery ratio. We define the recovery ratio516

ρ =
PSNRIII − PSNRII

PSNRI − PSNRII
(5)

which lies in [0, 1] under standard convexity conditions (see Supplementary Note 1 for517

formal analysis; values ρ > 1 are possible when the corrected operator provides beneficial518

regularization). ρ = 0 indicates that calibration yields no benefit (mismatch is not the519

bottleneck), while ρ = 1 indicates that calibration fully closes the mismatch gap.520

Agent System Architecture521

The PWM agent system comprises 6 specialist agents, 1 optional hybrid agent, and 8522

support classes totalling 10,545 lines of Python. All agents execute deterministically; no523

large language model (LLM) is required for pipeline operation.524

PlanAgent. The orchestrator agent. Given a user prompt or a structured ExperimentSpec,525

PlanAgent parses the intent (simulate, operator correction, or auto), maps the re-526

quested modality to its canonical key via the modalities.yaml registry (which contains 64527

modality entries with keywords, forward model equations, and default solvers), builds an528

ImagingSystem contract, and dispatches to the appropriate sub-agents. When the mode is529

auto, PlanAgent inspects the available data and operator specification to determine whether530

simulation or operator correction is more appropriate.531

PhotonAgent. Computes SNR feasibility deterministically from the photon db.yaml532

registry. For each modality and photon-level tier (bright, standard, low light), the agent533

evaluates the photon budget by combining source power, quantum efficiency, exposure time,534

and noise model parameters. The output PhotonReport is a strict Pydantic model contain-535

ing noise regime (enum), snr db (float), feasibility (enum), and per element photons536

(float).537

16



RecoverabilityAgent. A table-driven agent that consults compression db.yaml (1,186538

lines) to map the modality and compression ratio to an expected PSNR range. Each table539

entry includes provenance metadata citing the original source. The output RecoverabilityReport540

contains compression ratio, psnr prediction, feasibility, and null space dim where541

available.542

MismatchAgent. Scores the mismatch severity for a given imaging configuration us-543

ing mismatch db.yaml (797 lines). For each modality, the database enumerates the rel-544

evant mismatch parameters, their physical units, typical perturbation ranges, and avail-545

able correction algorithms. The output MismatchReport includes severity (float, 0–1),546

correction method (string), expected gain db (float), and dominant parameter (string).547

AnalysisAgent. The bottleneck classifier. It receives reports from the Photon, Recover-548

ability, and Mismatch agents, computes the gate costs (Equations (2) to (4)), identifies the549

dominant gate, and generates actionable suggestions. The AnalysisAgent also computes550

the recovery ratio ρ and its bootstrap confidence interval.551

AgentNegotiator. Implements a cross-agent veto protocol. Before reconstruction is au-552

thorized, the negotiator inspects all three upstream reports and applies three veto con-553

ditions: (1) low photon budget combined with aggressive compression (Cnoise and Crecover554

both large); (2) severe mismatch (severity > 0.7) without a planned correction step; (3) joint555

probability below the floor threshold (pjoint < 0.15), indicating that all three subsystems556

are simultaneously marginal. When any veto fires, reconstruction halts with an actionable557

explanation and suggested remediation.558

HybridAgent. An optional wrapper that invokes an LLM for natural-language narra-559

tive generation or edge-case modality mapping. All quantitative decisions remain on the560

deterministic code path; the HybridAgent is never required for pipeline operation.561

Support classes. The remaining components include: AssetManager (file I/O and caching562

for large arrays), ContinuityChecker (verifies that sequential pipeline outputs are dimen-563

sionally consistent), SystemDiscern (auto-detects modality from uploaded data), PreflightChecker564

(validates the complete experiment configuration before execution), WhatIfPrecomputer565

(evaluates counterfactual what-if scenarios), SelfImprovement (logs diagnostic events for566

future registry refinement), PhysicsStageVisualizer (generates intermediate visualiza-567

tions at each pipeline stage), and UPWMI (Universal Physics World Model Interface, the568

top-level entry point that wires all agents together).569

Contract system. Inter-agent communication uses 25 Pydantic v2 contract models. All570

contracts inherit from StrictBaseModel, which enforces extra="forbid" (no unexpected571
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fields), validate assignment=True (mutations re-validated), and a model validator that572

rejects NaN and Inf in any float field. Bounded scores use Field(ge=0.0, le=1.0). Enums573

are string enums for human-readable JSON serialization. This design ensures that pipeline574

failures surface immediately as validation errors rather than propagating silently.575

YAML registries. The system is driven by 9 YAML registries totalling 7,034 lines:576

modalities.yaml (modality definitions), graph templates.yaml (OperatorGraph skele-577

tons), photon db.yaml (photon models), mismatch db.yaml (mismatch parameters and578

correction methods), compression db.yaml (recoverability tables with provenance), solver registry.yaml579

(solver configurations), primitives.yaml (primitive operator metadata), dataset registry.yaml580

(dataset locations and formats), and acceptance thresholds.yaml (pass/fail thresholds581

per metric).582

Correction Algorithms583

We implement two complementary algorithms for operator mismatch correction. Crucially,584

both algorithms operate on the forward operator parameters θ rather than the reconstruc-585

tion solver weights, making them solver-agnostic: the corrected operator H(θ̂) benefits any586

downstream solver (GAP-TV, MST-L, HDNet18, CST, etc.) without retraining.587

Algorithm 1: Hierarchical Beam Search. The coarse correction phase employs a588

hierarchical search strategy to rapidly explore the mismatch parameter space. For CASSI,589

the five-parameter mismatch model comprises mask affine parameters (spatial shifts dx, dy590

and rotation θ) and dispersion parameters (slope a1 and axis angle α); an optional sixth591

parameter, PSF width σpsf, is available but not used in the primary experiments. The592

algorithm proceeds as follows:593

1. 1D sweeps. Each parameter is swept independently over its full range while holding594

others at nominal values. This produces five 1D cost curves from which coarse optima595

are extracted.596

2. 3D beam search. The mask affine subspace (dx, dy, θ) is searched over a 5× 5× 5597

grid centered on the 1D optima. The top-k (k = 5) candidates by reconstruction598

PSNR are retained.599

3. 2D beam search. For each retained mask candidate, the dispersion subspace (a1, α)600

is searched over a 5× 7 grid. The joint top-k candidates are retained.601

4. Coordinate descent refinement. Three rounds of univariate refinement on each602

parameter, shrinking the search interval by factor 2 at each round, produce the final603

estimate θ̂Alg1.604
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Total runtime is approximately 300 seconds per scene on a single GPU. Accuracy is605

±0.1–0.2 pixels for spatial parameters and ±0.05◦ for angular parameters.606

Algorithm 2: Joint Gradient Refinement. The fine correction phase uses a differen-607

tiable forward model to jointly optimize all mismatch parameters via gradient descent. The608

key components are:609

1. Differentiable mask warp. The binary mask is warped by a continuous affine610

transformation using bilinear interpolation, implemented as a custom PyTorch module611

(DifferentiableMaskWarpFixed). The mask values are passed through a straight-612

through estimator (STE) to maintain binary structure while permitting gradient flow.613

2. Differentiable forward model. The CASSI forward model y = CASSI(x; θ) is614

implemented as a differentiable PyTorch module (DifferentiableCassiForwardSTE)615

that accepts mismatch parameters as differentiable inputs.616

3. GPU grid initialization. A full-range 3D grid search over (dx, dy, θ) with 9×9×7 =617

567 points provides diverse starting candidates. The top 9 candidates seed multi-start618

gradient refinement.619

4. Staged gradient refinement. Each of the 9 candidates is refined using Adam620

optimization (learning rate 10−2, decaying to 10−3) for 200 steps. For each candidate,621

4 random restarts with jittered initialization guard against local minima. The loss622

function is the negative PSNR computed via an unrolled K-iteration differentiable623

GAP-TV solver (DifferentiableGAPTV, K = 10 unrolled iterations).624

Total runtime for Algorithm 2 is approximately 3,200 seconds (200 steps × 4 restarts ×625

9 candidates with early stopping). Accuracy improves to ±0.05–0.1 pixels, a 3–5× improve-626

ment over Algorithm 1. The two algorithms are used sequentially in practice: Algorithm 1627

provides a warm start, and Algorithm 2 refines to sub-pixel precision.628

Evaluation Protocol629

Four-Scenario Protocol. We evaluate every modality under four standardized scenarios630

that isolate different sources of quality degradation:631

Scenario I (Ideal): yobs = Htrue xgt; reconstruct with Htrue. This yields the oracle upper632

bound on reconstruction quality, limited only by the sensing geometry and solver633

convergence.634

Scenario II (Mismatch): yobs = Htrue xgt; reconstruct with Hnom (Hnom ̸= Htrue). This635

is the standard operating condition in practice: the measurement is generated by the636

true physics, but the reconstruction uses a nominal (potentially mismatched) forward637

model.638
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Scenario III (Corrected): yobs = Htrue xgt; reconstruct with Ĥ = H(θ̂) where θ̂ is639

estimated by Algorithms 1 and 2. This quantifies the benefit of mismatch calibration.640

Scenario IV (Oracle Mask): Same measurements as Scenario II (yobs = Htrue xgt with641

Htrue ̸= Hnom); reconstruct with Htrue instead of Hnom. Provides the correction642

ceiling: the best reconstruction achievable when the true operator is known exactly,643

applied to data that were sensed by the mismatched system. The gap between Sce-644

nario IV and Scenario I reveals the irreducible loss from the degraded sensing config-645

uration itself (e.g., a shifted mask pattern is suboptimal even when perfectly known).646

Metrics. Reconstruction quality is assessed using three complementary metrics:647

� PSNR (peak signal-to-noise ratio, in dB): the primary metric, computed per scene648

and averaged. For signals normalized to [0, 1], PSNR = 10 log10(1/MSE). For SPC649

data normalized to [0, 255], the peak value is 255.650

� SSIM (structural similarity index): captures perceptual quality including luminance,651

contrast, and structural components, computed with a Gaussian window of width 11652

and standard deviation 1.5.653

� SAM (spectral angle mapper): for hyperspectral modalities (CASSI), measures the654

angle between predicted and true spectral vectors at each spatial location, reported655

in degrees. Lower is better.656

Datasets.657

� CASSI: 10 scenes from the KAIST dataset6, each a 256× 256× 28 spectral cube (28658

spectral bands from 450 nm to 650 nm). Data range [0, 1].659

� CACTI: 6 benchmark videos, each 256 × 256 × 8 (8 temporal frames encoded per660

snapshot). Data range [0, 1].661

� SPC: 11 natural images from the Set11 benchmark, each 256× 256 grayscale. Data662

range [0, 255].663

All per-scene metrics are reported individually as well as averaged, and all reconstruction664

arrays are saved as NumPy NPZ files.665

Experimental Details666

Hardware. All experiments are conducted on a single NVIDIA GPU. Algorithm 1 (beam667

search) and all solver-based reconstructions use the GPU for matrix–vector products and668

FFT operations. Algorithm 2 (gradient refinement) additionally uses PyTorch automatic669

differentiation on the same GPU.670
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CASSI configuration. The coded aperture snapshot spectral imaging (CASSI) system671

uses a TSA-Net binary mask of dimensions 256×256, with 28 spectral bands dispersed along672

the spatial dimension. The five-parameter mismatch model ψ = (dx, dy, θ, a1, α) describes:673

mask spatial shift in x (dx, pixels), mask spatial shift in y (dy, pixels), mask rotation angle674

(θ, degrees), dispersion slope (a1, pixels per band), and dispersion axis angle (α, degrees).675

An optional sixth parameter, PSF blur width (σpsf, pixels), is available but not used in the676

primary experiments. For the primary mismatch experiment (validated by InverseNet), the677

true mismatch parameters are ψtrue = (dx = 0.5 px, dy = 0.3 px, θ = 0.1◦, a1 = 2.02, α =678

0.15◦). Solvers evaluated include TwIST22, GAP-TV17, DGSMP23, MST-L5, and CST-679

L24, all of which receive the same operator and differ only in their reconstruction algorithm.680

The supplementary per-scene analysis additionally includes DeSCI25 and HDNet18.681

CACTI configuration. The coded aperture compressive temporal imaging system uses682

binary temporal masks of dimensions 256 × 256, encoding 8 video frames into a single683

snapshot measurement. Mismatch is parameterized as a temporal mask timing offset (sub-684

frame shift). The default solver is GAP-TV with total-variation regularization.685

SPC configuration. The single-pixel camera uses random binary measurement patterns686

at three compression ratios: 10%, 25%, and 50% (r = m/n ∈ {0.10, 0.25, 0.50}). Mismatch687

is modeled as a multiplicative gain bias on the measurement matrix. The default solver is688

ADMM-TV with total-variation regularization and a wavelet sparsifying transform.689

MRI configuration. Cartesian k-space sampling with 4× acceleration (25% of k-space690

lines acquired). Mismatch is parameterized as a 5% multiplicative error in the coil sensitivity691

maps used for parallel imaging reconstruction. The default solver is SENSE15 with ℓ1-692

wavelet regularization.693

CT configuration. Fan-beam geometry with 180 projections over 180◦. Mismatch is694

modeled as a center-of-rotation (CoR) offset, which produces characteristic arc artifacts in695

the reconstruction. The default solver is filtered back-projection (FBP)16 with a Ram-Lak696

filter, supplemented by iterative SART for comparison.697

Statistical Analysis698

Per-scene reporting. All metrics are reported per scene, not merely as dataset averages.699

This enables identification of scene-dependent failure modes (e.g., spectrally flat scenes that700

are inherently harder for CASSI, or textureless regions that challenge SPC).701

Summary statistics. For each modality and scenario, we report the mean ± standard702

deviation of PSNR, SSIM, and SAM across all scenes. For CASSI (10 scenes), we addition-703

ally report the per-band PSNR to assess spectral uniformity of reconstruction quality.704
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Recovery ratio confidence intervals. The recovery ratio ρ (Equation (5)) is a ratio of705

differences and therefore sensitive to noise in the constituent PSNR values. We compute706

95% confidence intervals via the bootstrap percentile method with B = 1,000 resamples. At707

each bootstrap iteration, we resample the scene set with replacement, recompute the mean708

PSNR for each scenario, and derive ρ. The 2.5th and 97.5th percentiles of the bootstrap709

distribution define the 95% CI.710

Parameter recovery accuracy. For mismatch correction experiments, we report the711

root-mean-square error (RMSE) between the estimated and true mismatch parameters:712

RMSEk =

√√√√ 1

Nscene

Nscene∑
i=1

(θ̂k,i − θk,true)2 (6)

where k indexes the mismatch parameter, i indexes the scene, and Nscene is the number of713

test scenes. Uncertainty in the RMSE is estimated via bootstrap (B = 1,000).714

Ablation significance. Ablation studies (removal of PhotonAgent, RecoverabilityAgent,715

MismatchAgent, or RunBundle discipline) are evaluated by comparing the full-pipeline716

PSNR against each ablated variant. We report the PSNR difference ∆PSNR per modal-717

ity and verify that each component contributes ≥ 0.5 dB across all validated modalities,718

establishing practical significance.719

Code and Data Availability720

Source code. The complete PWM framework, including all agents, the OperatorGraph721

compiler, correction algorithms, YAML registries, and evaluation scripts, is released as722

open-source software under the MIT license at https://github.com/integritynoble/723

Physics_World_Model. The codebase is organized into two Python packages: pwm core724

(core framework, agents, graph compiler, calibration algorithms) and pwm AI Scientist725

(automated experiment generation and analysis).726

Reconstruction data. All reconstruction arrays from every experiment—Scenarios I727

through IV for each modality and solver—are released as NumPy NPZ files. Files are728

stored using Git LFS and require allow pickle=True for loading. Data ranges are stan-729

dardized: CASSI and CACTI reconstructions are normalized to [0, 1]; SPC reconstructions730

are in [0, 255].731

Experiment manifests. Every experiment is recorded in a RunBundle v0.3.0 manifest732

containing: the git commit hash at execution time, all random number generator seeds,733

platform information (Python version, GPU model, CUDA version), SHA-256 hashes of all734
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input data and output artifacts, metric values, and wall-clock timestamps. These manifests735

enable exact reproduction of every reported result.736

Registry data. All 9 YAML registries (7,034 lines total) that drive the agent system—737

including modality definitions, graph templates, photon models, mismatch databases, com-738

pression tables, solver configurations, primitive specifications, dataset paths, and acceptance739

thresholds—are publicly available in the repository under packages/pwm core/contrib/.740

The ExperimentSpec JSON schemas used for pipeline input validation are included along-741

side worked examples in examples/.742
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Figure 1 | PWM overview. The Physics World Models pipeline. a, A computational806

imaging system is compiled into an OperatorGraph DAG. b, The Triad Law diagnos-807

tic agents evaluate each gate. c, The dominant gate is identified and a TriadReport is808

produced. d, If Gate 3 dominates, autonomous correction refines the forward model param-809

eters. e, The original solver is re-run with the corrected operator, recovering reconstruction810

quality without retraining.811

Figure 2 | OperatorGraph IR and Physics Fidelity Ladder. a, Example Opera-812

torGraph DAGs for three modalities: CASSI (photon), MRI (spin), and CT (particle).813

Each node wraps a primitive operator; edges define data flow. b, The Physics Fidelity814

Ladder. Tier 1: linear shift-invariant. Tier 2: linear shift-variant. Tier 3: nonlinear815

ray/wave-based. Tier 4: full-wave/Monte Carlo. c, Summary statistics: 89 templates, 64816

modalities, 5 carrier families.817

Figure 3 | Triad Law structure and gate binding. a, Decision tree for the Triad818

Law: each imaging failure is routed through Gate 1, Gate 2, and Gate 3 to produce a819

TriadReport. b, Gate binding heatmap across 9 correction configurations (7 distinct820

modalities). Red indicates Gate 3 dominance (all modalities), blue indicates Gate 1, and821

amber indicates Gate 2. c, Recovery ratio ρ distribution across all 9 correction configura-822

tions.823

Figure 4 | Correction results across 9 validated configurations. Bar chart showing824

correction gain ∆corr (dB) for each of the 9 correction configurations (7 distinct modalities),825

grouped by carrier family. Incoherent photon (CASSI, CACTI, SPC, Lensless) and coherent826

photon (Ptychography) in blue; spin (MRI) in purple; X-ray (CT) in red; generic (Matrix)827

in grey.828

Figure 5 | CASSI and CACTI deep dive. a, CASSI: PSNR across 4 scenarios for829

GAP-TV, MST-L, and HDNet under combined mask-geometry-plus-dispersion mismatch.830

The uniform collapse under Scenario II (range 20.83–21.88 dB) confirms operator-driven831

failure; oracle recovery varies by solver (ρ = 0.22–0.46). b, CACTI: EfficientSCI across 4832

scenarios, showing 20.85 dB mismatch degradation and ρ > 1.0 (full recovery with regu-833

larization benefit). c, Example reconstructed spectral datacubes: Ideal, Mismatched, and834

Corrected.835

Figure 6 | Zero-shot generalization across carrier families. Correction gain (dB)836

when beam-search and gradient-refinement hyperparameters are tuned on photon-domain837

modalities and transferred without modification to coherent-photon, spin, and X-ray do-838

mains. Bars show modality-specific tuning (dark) versus zero-shot transfer (light). Transfer839
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efficiency is high across all carrier families, confirming the carrier-agnostic nature of the pwm840

correction pipeline.841
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