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Abstract. Compressive imaging faces a critical sim-to-real crisis: mod-
els trained on idealized forward operators fail catastrophically when
deployed on real hardware. Operator mismatch—the gap between as-
sumed and true forward operators—degrades deep learning reconstruc-
tion by 10–21 dB, yet no existing benchmark measures this effect. We
introduce InverseNet, the first cross-modality benchmark for operator
mismatch in compressive imaging, spanning coded aperture snapshot
spectral imaging (CASSI), coded aperture compressive temporal imag-
ing (CACTI), and single-pixel camera (SPC). InverseNet evaluates 11
reconstruction methods under a standardized three-scenario protocol—
ideal (I), mismatched (II), and oracle-corrected (III)—across 27 test
scenes and over 240 experiments. We discover an inverse performance–
robustness relationship: methods achieving the highest ideal PSNR suffer
the largest mismatch degradation—confirming that a mediocre algorithm
with a correct forward model outperforms a state-of-the-art network with
a wrong one. On CACTI, state-of-the-art EfficientSCI loses 20.58 dB un-
der mismatch, while classical GAP-TV recovers 93% of its own mismatch
loss through oracle calibration. We further establish a mask-awareness
taxonomy—mask-oblivious architectures show zero calibration benefit
(ρ = 0%), while mask-conditioned methods recover 41–90% of mismatch
losses depending on mismatch type. All reconstruction arrays, per-scene
metrics, and analysis code are publicly released. By providing a standard-
ized, reproducible evaluation of operator mismatch across modalities,
InverseNet aims to catalyze an “AlphaFold moment” for computational
imaging—shifting the field’s focus from ideal-condition leaderboards to
real-world deployment robustness.

Keywords: Compressive imaging · Operator mismatch · Calibration
· Benchmark · Spectral imaging · Video compressive sensing · Single-
pixel camera

1 Introduction

Compressive imaging acquires fewer measurements than the Nyquist limit by
exploiting signal structure, recovering the full signal through computational re-
construction. This paradigm underlies diverse modalities including hyperspectral
⋆ integrityyang@gmail.com

mailto:integrityyang@gmail.com


2 C. Yang

imaging via coded apertures [1,2], video compressive sensing via temporal cod-
ing [3,4], and single-pixel cameras via structured illumination [5,6]. In all cases,
reconstruction quality depends critically on knowledge of the forward measure-
ment operator—the mapping from scene to measurements.

Yet a dangerous chasm has formed between research and reality—a sim-to-
real valley of death. Reconstruction algorithms are developed and benchmarked
using idealized forward operators, but when these models are deployed on real
optical bench setups, performance collapses. The scale of this collapse is stag-
gering: EfficientSCI [12] reconstructs video at 35.39 dB from ideal measurements
but collapses to 14.81 dB—a 20.58 dB drop—under realistic 8-parameter mis-
match. This failure mode is not an edge case; it is the default condition of every
compressive imaging system in the field.

In practice, the assumed forward operator inevitably differs from the true
physical operator. For CASSI systems, mask misalignment of even 0.5 pixels and
0.1◦ rotation, combined with dispersion slope drift of 1% and axis offset of 0.15◦,
can degrade peak signal-to-noise ratio (PSNR) by over 13 dB [1]. For CACTI,
clock drift, duty cycle variations, and detector gain offsets collectively introduce
multi-parameter mismatch. For single-pixel cameras, gain drift in the digital mi-
cromirror device or photodetector causes systematic measurement errors. These
operator mismatches are ubiquitous in deployed systems yet are systematically
ignored in reconstruction benchmarks.

The CASP analogy. In biology, the Critical Assessment of protein Struc-
ture Prediction (CASP) challenge [28] transformed protein folding by forcing
blind prediction against nature’s ground truth, ultimately driving the AlphaFold
breakthrough [29]. Computational imaging needs its own CASP moment: a
benchmark that evaluates algorithms not against idealized simulations but against
the messy reality of physical measurement systems. InverseNet is designed to fill
this role.

The benchmark gap. Existing benchmarks for compressive imaging reconstruction—
such as the KAIST hyperspectral dataset for CASSI [17] and the video com-
pressive sensing benchmark for CACTI [4]—assume perfect operator knowledge.
Methods are evaluated only under Scenario I (ideal operator), providing no in-
formation about robustness to operator mismatch or the potential benefit of
calibration. This creates a critical blind spot: a method that achieves state-of-
the-art PSNR under ideal conditions may catastrophically fail in practice if it
is highly sensitive to operator errors. Antun et al. [30] demonstrated that deep
learning solvers for inverse problems are unstable to adversarial perturbations;
InverseNet operationalizes this finding into a systematic cross-modality bench-
mark that quantifies instability under physically realistic operator mismatch.

Contributions. Our central hypothesis is that a mediocre algorithm with
a correct physical model outperforms a state-of-the-art algorithm with a wrong
one—and our results confirm this across all three modalities. We address this
gap with InverseNet, which makes three contributions:

1. Unified three-scenario protocol. We define a standardized evaluation
framework with three scenarios—ideal (I), mismatched (II), and oracle-corrected
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(III)—applicable across compressive imaging modalities. The gap between
Scenarios I and II quantifies mismatch sensitivity; the recovery from II to
III quantifies the upper bound of calibration benefit.

2. Cross-modality benchmark. We evaluate 11 reconstruction methods (4 CASSI,
4 CACTI, 3 SPC) spanning classical optimization (GAP-TV, FISTA-TV)
and deep learning (MST, HDNet, EfficientSCI, ELP-Unfolding, ISTA-Net,
HATNet) across 27 test scenes, producing over 240 reconstruction experi-
ments.

3. Open dataset. We publicly release all reconstruction arrays, per-scene
metrics (PSNR, SSIM, SAM), and analysis code at https://github.com/
integritynoble/Physics_World_Model to enable reproducible operator-
mismatch research. All underlying test data come from existing public datasets.

Our key findings include: (a) operator mismatch degrades deep learning
methods by 10–21 dB while classical methods lose only 3–11 dB; (b) mask-aware
architectures (MST, ELP-Unfolding) are simultaneously the most sensitive to
mismatch and the most recoverable through calibration; (c) mask-oblivious ar-
chitectures (HDNet) show zero calibration benefit; (d) CACTI exhibits the most
severe mismatch degradation (up to 20.58 dB) due to its multi-parameter mis-
match space; (e) dispersion mismatch in CASSI creates larger degradation than
mask spatial mismatch alone, with limited oracle recoverability due to fixed-step
architectural assumptions.

2 Related Work

Compressive imaging reconstruction. Classical reconstruction methods for com-
pressive imaging employ convex optimization with sparsity-promoting regular-
ization. GAP-TV [7] uses the generalized alternating projection framework with
total variation (TV) regularization, applicable to both CASSI and CACTI.
FISTA [8] and ADMM [9] provide efficient solvers for ℓ1-regularized inverse prob-
lems. Deep learning methods have dramatically improved reconstruction quality:
MST [10] introduces mask-guided spectral transformers for CASSI; HDNet [11]
uses dual-domain processing; DAUHST [23] combines deep unfolding with hier-
archical spectral transformers; CST [24] leverages cross-stage spectral attention.
For video compressive sensing, EfficientSCI [12] and ELP-Unfolding [13] achieve
state-of-the-art results, while STFormer [25] introduces spatial-temporal trans-
formers. ISTA-Net [14] and HATNet [15] address single-pixel imaging. All these
methods are developed and evaluated assuming perfect forward operators.

Calibration and operator mismatch. Operator mismatch has been studied in spe-
cific modalities but not systematically benchmarked. For CASSI, Wagadarikar et al. [1]
identified mask misalignment as a key error source, and subsequent work [21]
proposed calibration procedures. For MRI, the fastMRI benchmark [19] evalu-
ates undersampling patterns but assumes known coil sensitivities. Phase retrieval
literature has examined model mismatch in coherent imaging [20]. Recent work
on robust reconstruction has explored distributional robustness and uncertainty

https://github.com/integritynoble/Physics_World_Model
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quantification in inverse problems [26], and plug-and-play methods with con-
vergence guarantees [27] provide frameworks for handling model uncertainty.
However, no prior work provides a unified cross-modality benchmark quantifying
both the degradation from mismatch and the recovery potential from calibration.

Reconstruction benchmarks. The KAIST TSA dataset [17] provides 10 simu-
lated hyperspectral scenes for CASSI evaluation. The video compressive sens-
ing benchmark [4] provides grayscale video sequences for CACTI. The Set11
dataset [18] is standard for single-pixel camera evaluation. Large-scale bench-
marks like NTIRE [31] have standardized image restoration challenges, and the
SupER dataset [32] provides real optical data for super-resolution, but neither
enables controlled modification of the forward model estimate. All these bench-
marks evaluate reconstruction quality under ideal conditions only. InverseNet
extends them by introducing controlled operator mismatch and measuring cal-
ibration recovery, creating the first cross-modality operator-mismatch bench-
mark.

3 The InverseNet Benchmark

3.1 Unified Three-Scenario Protocol

We define three evaluation scenarios that apply uniformly across all compressive
imaging modalities. Let Φ denote the true (physical) forward operator and Φ̂
the assumed (nominal) operator used during reconstruction.

– Scenario I (Ideal): The measurement is formed with the ideal operator Φ̂,
and reconstruction uses the same ideal operator. This represents the best-
case performance with perfect operator knowledge: y = Φ̂x+n, reconstruct
with Φ̂.

– Scenario II (Baseline): The measurement is formed with the true (mis-
matched) operator Φ, but reconstruction still uses the assumed operator Φ̂.
This represents the realistic deployment scenario where the physical operator
has drifted from its assumed value: y = Φx+ n, reconstruct with Φ̂.

– Scenario III (Oracle): The measurement is formed with the true operator
Φ (same as Scenario II), but reconstruction uses the true operator as oracle
knowledge: y = Φx+n, reconstruct with Φ. This represents the upper bound
achievable through perfect calibration.

This protocol yields two diagnostic metrics per method:

∆deg = PSNRI − PSNRII (mismatch degradation), (1)
∆rec = PSNRIII − PSNRII (oracle recovery), (2)

and the recovery ratio ρ = ∆rec/∆deg ∈ [0, 1], which measures what fraction of
the mismatch loss can be recovered through calibration.
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The Ladder of Pain. The three-scenario protocol can be understood as a snap-
shot from a graduated “Ladder of Pain”—a curriculum of increasing difficulty
from nominal (ideal) through geometric, temporal, radiometric, and combined
mismatch. Our current benchmark evaluates the combined (hardest) tier; future
rounds will report per-tier results to identify which mismatch types are most
damaging for each modality.

Toward forward-model estimation. While InverseNet currently evaluates recon-
struction under known mismatch (Scenario III provides oracle operator knowl-
edge), the benchmark design supports a more ambitious task: forward-model es-
timation, where participants must reverse-engineer the physical state of the mea-
surement system from calibration data alone. This transforms the challenge from
“reconstruct given the operator” to “identify the operator, then reconstruct”—a
strictly harder problem that better reflects real-world deployment.

3.2 CASSI: Coded Aperture Snapshot Spectral Imaging

Forward model. CASSI acquires a 2D measurement y ∈ RH×W ′ of a 3D hyper-
spectral cube x ∈ RH×W×Λ through a coded aperture mask M ∈ {0, 1}H×W

followed by a dispersive prism. The measurement at pixel (i, j) is:

y(i, j) =

Λ∑
λ=1

M(i, j − d(λ)) · x(i, j, λ) + n(i, j), (3)

where d(λ) is the dispersion shift for spectral band λ and W ′ = W + (Λ− 1) · s
with dispersion step s.

Mismatch model. We model CASSI operator mismatch as a 5-parameter pertur-
bation combining mask misalignment and dispersion drift:

Φ = D(a1, α) ◦ T (dx, dy, θ) ◦ Φ̂, (4)

where dx, dy are subpixel translational shifts, θ is a rotational misalignment of
the coded aperture mask, a1 is the dispersion slope (nominal s = 2.0 px/band),
and α is the dispersion axis angular offset. We use dx = 0.5 px, dy = 0.3 px,
θ = 0.1◦ for mask misalignment, and a1 = 2.02 px/band (1% drift from nominal)
and α = 0.15◦ for dispersion mismatch, representing moderate assembly and
optical tolerances.

Reconstruction methods. We evaluate four methods: GAP-TV [7]: classical ac-
celerated proximal gradient with TV regularization (100 iterations, λTV = 0.1);
HDNet [11]: dual-domain deep network with spectral discrimination learning
(pretrained); MST-S [10]: mask-guided spectral transformer, small variant (2
stages, blocks [2, 2, 2], pretrained); MST-L [10]: mask-guided spectral trans-
former, large variant (2 stages, blocks [4, 7, 5], pretrained).
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Dataset. We use 10 scenes from the KAIST TSA simulated dataset [17], each
consisting of a 256 × 256 × 28 hyperspectral cube spanning 450–650 nm. Mea-
surements are formed with a binary random mask (s = 2 pixels/band), yielding
256×310 detector images. Low noise (α = 105 photon peak, σ = 0.01 read noise)
isolates the effect of operator mismatch.

3.3 CACTI: Coded Aperture Compressive Temporal Imaging

Forward model. CACTI acquires a single 2D snapshot y ∈ RH×W encoding B
high-speed video frames x ∈ RH×W×B through a dynamic coded aperture:

y(i, j) =

B∑
b=1

Cb(i, j) · x(i, j, b) + n(i, j), (5)

where Cb ∈ {0, 1}H×W is the binary mask pattern for temporal frame b.

Mismatch model. CACTI mismatch involves 8 parameters capturing spatial,
temporal, and radiometric errors: spatial shifts (dx = 0.5 px, dy = 0.3 px),
rotation (θ = 0.1◦), temporal clock offset (∆t = 0.05), duty cycle deviation
(η = 0.95), detector gain (g = 1.02), offset (o = 0.002), and measurement noise
(σn = 1.0).

Reconstruction methods. We evaluate four methods: GAP-TV [7]: classical iter-
ative with TV regularization; PnP-FFDNet [16]: plug-and-play with FFDNet
denoiser; ELP-Unfolding [13]: ensemble learning priors driven deep unfold-
ing network (pretrained); EfficientSCI [12]: efficient deep learning for snapshot
compressive imaging (pretrained).

Dataset. We use 6 standard benchmark videos (kobe, traffic, runner, drop, crash,
aerial) at 256 × 256 resolution with B = 8 temporal frames per snapshot, fol-
lowing the standard video compressive sensing evaluation protocol [4].

3.4 SPC: Single-Pixel Camera

Forward model. The single-pixel camera acquires m scalar measurements of an
image x ∈ Rn through structured illumination patterns:

y = Ax+ n, (6)

where A ∈ Rm×n is the measurement matrix (typically Gaussian or Hadamard
patterns) with compression ratio m/n.

Mismatch model. We model SPC mismatch as multiplicative gain drift affecting
the measurement matrix:

Φ = diag(1 + α · g) · Φ̂, (7)

where α = 0.0015 controls the drift magnitude and g is a per-row gain pertur-
bation vector. Additional measurement noise σy = 0.03 is applied.
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Fig. 1: PSNR across three scenarios for all modalities. Scenario I (Ideal): perfect
operator. Scenario II (Baseline): mismatched operator. Scenario III (Oracle):
true operator used for reconstruction. The collapse of deep learning methods
under Scenario II is visible across all modalities, with CACTI showing the most
severe degradation.

Reconstruction methods. We evaluate three methods: FISTA-TV [8]: fast iter-
ative shrinkage-thresholding with TV regularization (500 iterations, λ = 0.005);
ISTA-Net [14]: learned iterative shrinkage-thresholding network (pretrained);
HATNet [15]: dual-scale transformer for single-pixel imaging (pretrained).

Dataset. We use the 11 standard Set11 test images (Monarch, Parrots, barbara,
boats, cameraman, fingerprint, flinstones, foreman, house, lena256, peppers256 )
at 256× 256 resolution with 25% sampling ratio.

3.5 Evaluation Metrics

We report three standard image quality metrics:

– PSNR (peak signal-to-noise ratio, dB): pixel-level fidelity, computed per-
channel and averaged.

– SSIM (structural similarity index): perceptual structural quality [22].
– SAM (spectral angle mapper, degrees): spectral fidelity, reported for CASSI

only.

4 Experimental Results

4.1 CASSI Results

Figure 2 provides qualitative examples of reconstruction degradation and recov-
ery across all three modalities. Table 1 presents the CASSI benchmark results
across 10 KAIST scenes (fig. 1).
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Fig. 2: Qualitative reconstruction comparison across three modalities. Each row
shows a representative scene for one modality (CASSI: Scene 1 band 14, MST-L;
CACTI: kobe frame 4, ELP-Unfolding; SPC: cameraman, HATNet). Error maps
(jet colormap, same scale per row) highlight how mismatch (Scenario II) intro-
duces spatially structured artifacts that oracle correction (Scenario III) largely
removes.

Key findings. The CASSI results under the 5-parameter mismatch model reveal a
striking dichotomy between mask-aware and mask-oblivious architectures, with
dispersion mismatch creating significantly larger degradation than mask spatial
mismatch alone. MST-L achieves the best ideal performance (34.81 dB) and
the highest oracle recovery (+6.50 dB, ρ = 46.5%), making it the optimal choice
when calibration is available. However, the moderate recovery ratio reflects the
limitation that current architectures assume fixed integer dispersion steps and
cannot fully correct sub-pixel dispersion drift even with oracle mask knowledge.
HDNet, which processes only the initial spectral estimate without mask input,
shows zero oracle gain (∆rec = 0.00 dB), confirming that mask-oblivious archi-
tectures cannot benefit from operator calibration. GAP-TV shows moderate
mismatch degradation (∆deg = 3.38 dB) with a 22.5% recovery ratio, demon-
strating that even classical iterative solvers benefit from oracle calibration when
tuned to competitive strength (24.34 dB ideal). Under Scenario II (uncorrected
mismatch), all deep learning methods converge to a narrow performance range
(20.83–21.88 dB), erasing the ∼10 dB advantage they hold over classical methods
under ideal conditions.

SSIM and SAM analysis. SSIM trends mirror PSNR findings. MST-L recovers
from 0.744 to 0.881 SSIM under oracle correction, while HDNet remains fixed
at 0.756. For SAM, MST-L improves from 23.92◦ (Scenario II) to 11.74◦ (Sce-
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Table 1: CASSI reconstruction results (10 KAIST scenes, 256 × 256 × 28, 5-
parameter mismatch). PSNR (dB) / SSIM reported as mean ± std. ∆deg: degra-
dation (I→II). ∆rec: oracle recovery (II→III). ρ: recovery ratio. Best recovery in
green.
Method Scenario I Scenario II Scenario III ∆deg ∆rec ρ

GAP-TV [7] 24.34±1.90 / .722 20.96±1.62 / .611 21.72±1.48 / .687 3.38 0.76 22.5%
HDNet [11] 34.66±2.62 / .970 21.88±1.72 / .756 21.88±1.72 / .756 12.78 0.00 0%
MST-S [10] 33.98±2.50 / .965 20.99±2.08 / .771 26.28±1.88 / .870 12.99 5.29 40.7%
MST-L [10] 34.81±2.11 / .973 20.83±2.01 / .744 27.33±1.86 / .881 13.98 6.50 46.5%

Table 2: CACTI reconstruction results (6 videos, 256 × 256 × 8). PSNR (dB)
/ SSIM reported as mean ± std. CACTI exhibits the most severe mismatch
degradation of all three modalities.
Method Scenario I Scenario II Scenario III ∆deg ∆rec ρ

GAP-TV [7] 26.75±4.48 / .848 15.81±1.98 / .305 26.01±3.72 / .794 10.94 10.21 93.3%
PnP-FFDNet [16] 29.28±5.53 / .890 11.43±2.71 / .216 25.39±3.52 / .820 17.85 13.96 78.2%
ELP-Unfolding [13] 34.09±4.11 / .965 15.47±1.71 / .308 29.40±3.15 / .927 18.63 13.93 74.8%
EfficientSCI [12] 35.39±4.46 / .973 14.81±2.19 / .303 27.38±3.52 / .927 20.58 12.57 61.1%

nario III), compared to the ideal value of 7.44◦. The residual SAM gap (11.74◦
vs. 7.44◦) reflects the spectral distortion from uncorrected dispersion mismatch,
which mask-only oracle correction cannot fully address.

4.2 CACTI Results

Table 2 presents the CACTI benchmark results across 6 standard benchmark
videos (fig. 1).

Key findings. CACTI exhibits the most severe mismatch degradation of all
three modalities, with losses ranging from 10.94 dB (GAP-TV) to 20.58 dB (Ef-
ficientSCI). The 8-parameter mismatch space—encompassing spatial, tempo-
ral, and radiometric errors—creates compounding degradation that is far more
destructive than the 5-parameter mismatch in CASSI. Under Scenario II, all
methods collapse to 11–16 dB, with SSIM dropping below 0.31, indicating near-
complete reconstruction failure.

GAP-TV achieves the highest recovery ratio (ρ = 93.3%), recovering 10.21 dB
of its 10.94 dB loss. This demonstrates that classical iterative methods, which di-
rectly incorporate the forward operator in each iteration, are highly responsive to
operator correction. EfficientSCI, despite achieving the best ideal performance
(35.39 dB), has the lowest recovery ratio (61.1%), suggesting that its learned
features are partially coupled to the ideal operator in ways that oracle mask
knowledge cannot fully address.
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Fig. 3: Mismatch degradation (∆deg, left) and oracle recovery (∆rec, right) per
method across all three modalities. CACTI suffers the most severe degradation
(up to 20.6 dB) but also the highest absolute recovery. For CASSI, HDNet shows
zero recovery due to its mask-oblivious architecture; MST-L achieves the best re-
covery (+6.50 dB, ρ = 46.5%). For SPC, HATNet recovers 10.4 dB (ρ = 89.6%).

An inverse relationship. A notable pattern emerges, also visible in the cross-
modality scatter plot (fig. 4): methods with higher ideal performance suffer larger
mismatch degradation and achieve lower recovery ratios. EfficientSCI (best ideal:
35.39 dB) loses 20.58 dB and recovers 61.1%; GAP-TV (worst ideal: 26.75 dB)
loses 10.94 dB and recovers 93.3%. This suggests that higher-capacity learned
representations encode stronger implicit assumptions about the operator, making
them more fragile when those assumptions are violated.

4.3 SPC Results

Table 3 presents the SPC benchmark results across 11 Set11 images (fig. 1).

Key findings. The SPC results show that gain drift uniformly degrades all
methods to a narrow 18.51–19.40 dB range under Scenario II, despite a 3.79 dB
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Table 3: SPC reconstruction results (11 Set11 images, 256×256, 25% sampling).
PSNR (dB) / SSIM reported as mean ± std.
Method Scenario I Scenario II Scenario III ∆deg ∆rec ρ

FISTA-TV [8] 28.06±3.38 / .852 18.51±0.69 / .586 26.21±2.28 / .759 9.55 7.71 80.7%
ISTA-Net [14] 31.85±3.11 / .916 19.02±0.61 / .584 27.45±1.32 / .760 12.83 8.43 65.7%
HATNet [15] 30.98±0.95 / .847 19.40±0.59 / .648 29.78±0.81 / .807 11.58 10.38 89.6%

Table 4: Cross-modality summary. For each modality, we report the range of
mismatch degradation (∆deg), oracle recovery (∆rec), and the best recovery ratio
(ρbest) across methods. Mismatch dim. is the number of mismatch parameters.

Modality Mismatch dim. ∆deg range ∆rec range ρbest Best method

CASSI 5 3.38–13.98 0.00–6.50 46.5% MST-L
CACTI 8 10.94–20.58 10.21–13.96 93.3% GAP-TV
SPC 2 9.55–12.83 7.71–10.38 89.6% HATNet

spread under ideal conditions. HATNet achieves the highest oracle recovery
(+10.38 dB, ρ = 89.6%), recovering nearly to its ideal performance (29.78 vs.
30.98 dB). ISTA-Net, despite the best ideal performance (31.85 dB), achieves
only 65.7% recovery ratio, consistent with the CACTI observation that higher-
capacity learned representations are more fragile under mismatch. FISTA-TV
achieves a balanced 80.7% recovery ratio with the lowest ideal performance.

Mismatch uniformity. Under Scenario II, the standard deviation across images
decreases dramatically (from 0.95–3.38 dB to 0.59–0.69 dB), indicating that gain
drift mismatch creates a performance floor independent of image content. This
is consistent with the multiplicative nature of gain drift, which affects all mea-
surement rows similarly.

4.4 Cross-Modality Analysis

Table 4 synthesizes the key metrics across all three modalities.

Mismatch severity ranking. CACTI suffers the most severe degradation (10.94–
20.58 dB), followed by CASSI (3.38–13.98 dB) and SPC (9.55–12.83 dB). The
CACTI severity is driven by its high-dimensional mismatch space (8 parameters
vs. 5 for CASSI and 2 for SPC), where spatial, temporal, and radiometric errors
compound. With the 5-parameter mismatch model, CASSI now surpasses SPC in
maximum degradation, driven by the dispersion parameters (a1, α) which create
cumulative sub-pixel shifts across spectral bands. For CASSI, the range reflects
the architectural divide: GAP-TV’s iterative optimization adapts partially to
the corrupted measurement (3.38 dB loss), while mask-aware deep networks lose
over 13 dB.
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Table 5: Mismatch parameters per modality. CASSI: mask spatial misalignment
+ dispersion drift (5 parameters). CACTI: spatial + temporal + radiometric
mismatch (8 parameters). SPC: multiplicative gain drift.

Modality Parameter Value Physical interpretation

CASSI

dx 0.5 px Horizontal mask shift
dy 0.3 px Vertical mask shift
θ 0.1◦ Mask rotation
a1 2.02 px/band Dispersion slope (nominal 2.0)
α 0.15◦ Dispersion axis offset

CACTI

dx 0.5 px Horizontal mask shift
dy 0.3 px Vertical mask shift
θ 0.1◦ Mask rotation
∆t 0.05 Clock offset
η 0.95 Duty cycle deviation
g 1.02 Detector gain
o 0.002 Detector offset
σn 1.0 Measurement noise

SPC α 0.0015 Gain drift magnitude
σy 0.03 Measurement noise

Recovery potential. Figure 4 visualizes the recovery ratio versus ideal perfor-
mance for all methods. The best recovery ratio varies by modality: GAP-TV
achieves 93.3% on CACTI, HATNet achieves 89.6% on SPC, and MST-L achieves
46.5% on CASSI. The lower CASSI recovery ratio reflects the fundamental chal-
lenge of dispersion mismatch: current architectures assume fixed integer dis-
persion steps (s = 2 px/band) and cannot adapt to the true dispersion slope
(a1 = 2.02 px/band) even when oracle mask knowledge is provided. This suggests
that the recovery potential depends on both the method architecture and the
mismatch structure, with dispersion-type mismatches being significantly harder
to correct than spatial mismatches alone. Notably, the best-recovering method is
not always the one with the highest ideal performance—a finding with practical
implications for system design.

Architectural patterns. Across modalities, we observe consistent patterns: (i) clas-
sical methods (GAP-TV, FISTA-TV) show moderate degradation and high re-
covery ratios; (ii) mask-aware deep methods (MST, ELP-Unfolding, HATNet)
show high degradation but substantial recovery; (iii) mask-oblivious deep meth-
ods (HDNet) show moderate degradation but zero recovery. This three-way clas-
sification provides a practical taxonomy for selecting reconstruction methods
based on whether calibration is available.
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Fig. 4: Recovery ratio (ρ) vs. ideal PSNR (Scenario I) for all 11 methods across
three modalities. Color indicates modality; shape indicates method type (classi-
cal, mask-aware, mask-oblivious). An inverse trend is visible: higher-performing
methods tend to have lower recovery ratios, suggesting that stronger learned
priors create greater operator dependence.

5 Discussion

Classical vs. deep learning robustness. A consistent finding across all modalities
is that classical optimization methods are more robust to operator mismatch
than deep learning methods. GAP-TV loses 3.38 dB on CASSI and 10.94 dB on
CACTI (vs. 13.98 dB and 20.58 dB for the best deep networks). However, this
robustness comes at the cost of lower ideal performance (24.34 dB vs. 34.81 dB
on CASSI). The practical implication is that when calibration is unavailable
or imperfect, classical methods may outperform deep learning: on CACTI Sce-
nario II, GAP-TV (15.81 dB) outperforms PnP-FFDNet (11.43 dB) by 4.38 dB
despite being 2.53 dB worse under ideal conditions.

The sim-to-real collapse. Under mismatch, the performance hierarchy inverts.
On CACTI Scenario II, the best deep network (EfficientSCI, 35.39 dB ideal)
scores 14.81 dB—barely above GAP-TV’s 15.81 dB. The 8.64 dB advantage that
EfficientSCI holds under ideal conditions is not merely erased but inverted: GAP-
TV outperforms it by 1.0 dB under realistic deployment conditions. This confirms
our central hypothesis: a mediocre algorithm with a correct forward model beats
a state-of-the-art algorithm with a wrong one.

The mask-awareness spectrum. Our results reveal that reconstruction methods
exist on a spectrum of mask-awareness:
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– Mask-oblivious (HDNet): The mask is not an input; reconstruction quality
depends only on the measurement. No calibration benefit is possible (ρ =
0%).

– Mask-conditioned (MST-S, MST-L, HATNet): The mask explicitly condi-
tions the reconstruction network. These methods achieve moderate-to-high
calibration gains (ρ = 41–90%) but suffer the largest mismatch degradation.
The recovery ratio depends on mismatch type: spatial mask mismatch is
highly recoverable (SPC HATNet: 90%), while dispersion mismatch limits
recovery (CASSI MST-L: 47%).

– Operator-iterative (GAP-TV, FISTA-TV): The forward operator is used in
each optimization iteration. These methods achieve high recovery ratios on
spatial and gain-type mismatches (ρ = 81–93% on CACTI and SPC), though
dispersion mismatch limits CASSI recovery (ρ = 23%).

This taxonomy reframes the reconstruction problem: the critical bottleneck
is not algorithmic sophistication but physical model fidelity. Mask-conditioned
architectures are optimal when calibration is feasible, while mask-oblivious ar-
chitectures provide a stable (but suboptimal) fallback.

Oracle recovery as calibration upper bound. Scenario III provides the upper
bound for calibration benefit, achievable only with perfect knowledge of the true
operator. In practice, calibration algorithms estimate the mismatch parameters
with finite precision, so the actual calibration gain will be less than ∆rec. The
large recovery values we observe (up to 13.96 dB for CACTI, 10.38 dB for SPC,
6.50 dB for CASSI) strongly motivate the development of practical calibration
methods, even if they recover only a fraction of the oracle bound. The CASSI re-
sults further suggest that dispersion-aware reconstruction architectures—which
can adapt their spectral shifting to the true dispersion parameters—could sig-
nificantly improve recovery beyond the 46.5% achieved by current fixed-step
methods.

Residual gap analysis. Figure 5 visualizes the residual gap ∆res = PSNRI −
PSNRIII, which represents unrecoverable losses due to measurement corrup-
tion and architectural limitations in the oracle correction. For CASSI MST-
L, ∆res = 7.48 dB; for CACTI GAP-TV, ∆res = 0.74 dB; for SPC HATNet,
∆res = 1.20 dB. The larger CASSI residual gap reflects the dispersion mismatch
that oracle mask correction alone cannot address: current architectures (MST,
HDNet) use fixed integer dispersion steps, so the 1% slope drift (a1 = 2.02
vs. nominal 2.0 px/band) creates cumulative sub-pixel errors across 28 spectral
bands that persist even with perfect mask knowledge. The small residual gaps
for CACTI and SPC confirm that for spatial and gain-type mismatches, oracle
correction nearly recovers ideal performance.

Method-specific insights. HDNet presents an instructive case: its mask-oblivious
architecture processes only the initial spectral estimate (28 channels from the
shift-back operation), making it inherently insensitive to the reconstruction mask.
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Fig. 5: Residual gap (∆res = PSNRI −PSNRIII) per method, grouped by modal-
ity. CASSI exhibits the largest residual gaps due to dispersion mismatch that
oracle mask correction alone cannot address. CACTI and SPC residual gaps are
small, confirming high recoverability of spatial and gain-type mismatches.

While this provides stability under mismatch (21.88 dB in both Scenarios II and
III), it permanently forfeits any calibration benefit from the 12.78 dB degra-
dation. EfficientSCI on CACTI reveals that state-of-the-art performance un-
der ideal conditions can be a liability: its 35.39 dB ideal performance drops to
14.81 dB under mismatch, a 20.58 dB loss that is only 61.1% recoverable. This
suggests that EfficientSCI encodes strong implicit assumptions about the CACTI
operator that extend beyond what oracle mask knowledge can correct.

6 Conclusion

We have presented InverseNet, the first cross-modality benchmark for opera-
tor mismatch in compressive imaging. By evaluating 11 reconstruction methods
across CASSI, CACTI, and SPC under a standardized three-scenario protocol,
we establish several key findings: (1) operator mismatch degrades deep learn-
ing methods by 10–21 dB, collapsing the performance advantage over classical
methods; (2) mask-aware architectures can recover 40–90% of mismatch losses
through oracle calibration, with recovery depending on mismatch type; (3) mask-
oblivious architectures provide mismatch stability at the cost of zero calibration
benefit; (4) CACTI’s high-dimensional mismatch space creates the most severe
degradation across modalities.

These findings have direct implications for the design of compressive imaging
systems. When calibration is feasible, mask-conditioned deep networks (MST-
L for CASSI, HATNet for SPC) should be preferred for their high recovery
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potential. When calibration is unavailable, classical methods (GAP-TV) provide
the most robust baseline.

Dataset release. We release all 240+ reconstruction arrays, per-scene met-
rics, and analysis code. The benchmark is extensible: new modalities, methods,
and mismatch models can be added by implementing the three-scenario protocol.

Future directions. A natural evolution is to replace oracle operator knowl-
edge (Scenario III) with a calibration packet—a standardized set of diagnostic
measurements (flat-field, dark-field, sparse-field, strobe-field) from which partic-
ipants must estimate the true operator. This transforms InverseNet from a re-
construction benchmark into a system-identification challenge, analogous to how
CASP evolved from homology modeling to end-to-end structure prediction [28].
Our CASSI results highlight a specific opportunity: dispersion-aware architec-
tures that parameterize the spectral shift function (rather than assuming fixed
integer steps) could significantly improve recovery from dispersion mismatch.
Additionally, incorporating learned robustness through mismatch-aware train-
ing could bridge the gap between mask-conditioned and mask-oblivious archi-
tectures. Future InverseNet rounds will adopt CASP-style blind evaluation: par-
ticipants submit containerized solvers evaluated on sealed test sets with hidden
mismatch parameters, preventing overfitting to known test scenes and enabling
fair longitudinal comparison.

Broader context. InverseNet serves as the targeting system rail for the
Physics World Model (PWM), providing a durable evaluation infrastructure
for computational imaging. While reconstruction solvers are continuously re-
placed with improved methods, the three-scenario protocol, scoring formulas,
and benchmark datasets remain fixed, ensuring fair longitudinal comparison.

Data and code availability. All InverseNet benchmark data—including 240+
reconstruction arrays (NPZ format), per-scene metrics (PSNR, SSIM, SAM),
mismatch parameter configurations, and figure-generation scripts—are publicly
available at https://github.com/integritynoble/Physics_World_Model un-
der the papers/inversenet/ directory. The underlying test images come from
publicly available sources: the KAIST TSA hyperspectral dataset [17] (CASSI),
the standard video compressive sensing benchmark [4] (CACTI), and the Set11
dataset [18] (SPC). No non-public or restricted-access datasets were used in this
work. All pretrained model weights were obtained from the respective authors’
public repositories as cited.

References

1. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded
aperture snapshot spectral imaging. Applied Optics 47(10), B44–B51 (2008)

2. Meng, Z., Ma, J., Yuan, X.: End-to-end low cost compressive spectral imaging with
spatial-spectral self-attention. In: ECCV. pp. 187–204 (2020)

3. Llull, P., Liao, X., Yuan, X., Yang, J., Kittle, D., Carin, L., Sapiro, G., Brady, D.J.:
Coded aperture compressive temporal imaging. Optics Express 21(9), 10526–10545
(2013)

https://github.com/integritynoble/Physics_World_Model


InverseNet: Operator Mismatch Benchmark 17

4. Yuan, X., Brady, D.J., Katsaggelos, A.K.: Snapshot compressive imaging: The-
ory, algorithms, and applications. IEEE Signal Processing Magazine 38(2), 65–88
(2021)

5. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F.,
Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Pro-
cessing Magazine 25(2), 83–91 (2008)

6. Edgar, M.P., Gibson, G.M., Padgett, M.J.: Principles and prospects for single-pixel
imaging. Nature Photonics 13(1), 13–20 (2019)

7. Yuan, X.: Generalized alternating projection based total variation minimization
for compressive sensing. In: ICIP. pp. 2539–2543 (2016)

8. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning 3(1), 1–122 (2011)

10. Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: Mask-guided spectral-wise transformer for efficient hyperspectral image recon-
struction. In: CVPR. pp. 17502–17511 (2022)

11. Hu, X., Cai, Y., Lin, J., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: HDNet: High-resolution dual-domain learning for spectral compressive imaging.
In: CVPR. pp. 17542–17551 (2022)

12. Wang, L., Cao, M., Yuan, X.: EfficientSCI: Densely connected network with space-
time factorization for large-scale video snapshot compressive imaging. In: CVPR.
pp. 18477–18486 (2023)

13. Yang, C., Zhang, S., Yuan, X.: Ensemble learning priors driven deep unfolding for
scalable video snapshot compressive imaging. In: ECCV. pp. 600–618 (2022)

14. Zhang, J., Ghanem, B.: ISTA-Net: Interpretable optimization-inspired deep net-
work for image compressive sensing. In: CVPR. pp. 1828–1837 (2018)

15. Qu, G., Wang, P., Yuan, X.: Dual-scale transformer for large-scale single-pixel
imaging. In: CVPR. pp. 25327–25337 (2024)

16. Yuan, X., Liu, Y., Suo, J., Dai, Q.: Plug-and-play algorithms for large-scale snap-
shot compressive imaging. In: CVPR. pp. 1447–1457 (2020)

17. Choi, I., Jeon, D.S., Nam, G., Gutierrez, D., Kim, M.H.: High-quality hyperspectral
reconstruction using a spectral prior. ACM Transactions on Graphics 36(6), 218:1–
218:13 (2017)

18. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: Non-
iterative reconstruction of images from compressively sensed measurements. In:
CVPR. pp. 449–458 (2016)

19. Zbontar, J., Knoll, F., Sriram, A., Murrell, T., Huang, Z., Muckley, M.J., De-
fazio, A., Stern, R., Johnson, P., Bruno, M., et al.: fastMRI: An open dataset and
benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839 (2018)

20. Elser, V.: Phase retrieval by iterated projections. Journal of the Optical Society of
America A 20(1), 40–55 (2003)

21. Arguello, H., Rueda, H., Wu, Y., Prather, D.W., Arce, G.R.: Higher-order compu-
tational model for coded aperture spectral imaging. Applied Optics 52(10), D12–
D21 (2013)

22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13(4), 600–612 (2004)



18 C. Yang

23. Cai, Y., Lin, J., Wang, H., Yuan, X., Ding, H., Zhang, Y., Timofte, R., Van Gool,
L.: Degradation-aware unfolding half-shuffle transformer for spectral compressive
imaging. In: NeurIPS (2022)

24. Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: Coarse-to-fine sparse transformer for hyperspectral image reconstruction. In:
ECCV. pp. 686–704 (2022)

25. Wang, L., Cao, M., Zhong, Y., Yuan, X.: Spatial-temporal transformer for video
snapshot compressive imaging. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 45(7), 9072–9089 (2023)

26. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Transactions on
Medical Imaging 37(6), 1322–1332 (2018)

27. Ryu, E., Liu, J., Wang, S., Chen, X., Wang, Z., Yin, W.: Plug-and-play methods
provably converge with properly trained denoisers. In: ICML. pp. 5546–5557 (2019)

28. Moult, J., Fidelis, K., Zemla, A., Hubbard, T.: Critical assessment of methods of
protein structure prediction (CASP)—round 6. Proteins 61(S7), 3–7 (2005)

29. Jumper, J., Evans, R., Pritzel, A., et al.: Highly accurate protein structure predic-
tion with AlphaFold. Nature 596(7873), 583–589 (2021)

30. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep
learning in image reconstruction and the potential costs of AI. PNAS 117(48),
30088–30098 (2020)

31. Timofte, R., Agustsson, E., Van Gool, L., et al.: NTIRE 2017 challenge on single
image super-resolution: Methods and results. In: CVPR Workshops. pp. 1110–1121
(2017)

32. Köhler, T., Bätz, M., Naderi, F., et al.: Toward bridging the simulated-to-real
gap: Benchmarking super-resolution on real data. IEEE TPAMI 42(11), 2944–2959
(2020)


	InverseNet: A CASP-Inspired Benchmark for Operator Mismatch in Compressive Imaging

