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Abstract. Coded aperture snapshot spectral imaging (CASSI) acquires
hyperspectral data cubes in a single shot but requires accurate knowl-
edge of the forward measurement operator—the coded aperture mask po-
sition, orientation, and dispersive element parameters—for high-quality
reconstruction. In practice, manufacturing tolerances and assembly drift
introduce operator mismatch that degrades reconstruction by 10-17 dB.
We present a differentiable calibration framework that models CASSI
mismatch as a 6-parameter perturbation (spatial shift, rotation, disper-
sion slope and axis angle) and recovers these parameters through a two-
stage pipeline: (1) a hierarchical beam search over a coarse parameter
grid (~38s/scene), followed by (2) a joint gradient refinement using dif-
ferentiable PyTorch modules—including a straight-through estimator for
integer dispersion offsets and an unrolled GAP-TV solver with gradient
checkpointing (~366s/scene). Central to our approach is an enlarged
grid forward model with 4x spatial and 2x spectral oversampling (217
bands), providing sub-pixel sensitivity to mismatch parameters. Vali-
dated on 10 KAIST hyperspectral scenes under a three-scenario protocol,
our method achieves a calibration gain of +5.06 dB, recovering 30% of
the 16.60 dB mismatch loss. When combined with oracle correction us-
ing mask-aware deep networks (MST-L), the recovery reaches +7.99dB
(75.5% of mismatch loss), demonstrating the synergy between calibration
and learned reconstruction.
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1 Introduction

Coded aperture snapshot spectral imaging (CASSI) acquires a three-dimensional
hyperspectral data cube x € RE*W>4 from a single two-dimensional measure-
ment y € REXW' by encoding spectral information through a binary coded
aperture followed by a dispersive prism [1l2]. Computational reconstruction algo-
rithms then recover the hyperspectral cube from this compressed measurement,
exploiting sparsity in appropriate transform domains [3/4].

The quality of CASSI reconstruction depends critically on accurate knowl-
edge of the forward measurement operator ®—the mapping from scene to mea-
surement defined by the coded aperture mask position, orientation, and disper-
sive element parameters. In practice, the assumed operator o inevitably differs
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from the true physical operator ® due to manufacturing tolerances, mechanical
assembly errors, thermal drift, and optical alignment imprecision. Even moderate
misalignment—0.5 pixels of mask shift and 0.1° of rotation—can degrade peak
signal-to-noise ratio (PSNR) by over 10dB [I], erasing the quality advantage
of state-of-the-art deep learning reconstruction methods [4/5]. As demonstrated
by the InverseNet benchmark [6], operator mismatch reduces all deep learning
methods to a narrow 24-25dB performance band regardless of their 10+ dB
spread under ideal conditions.

Current CASSI calibration approaches are predominantly offline procedures
requiring dedicated calibration targets (checkerboards, spectral lamps) and man-
ual alignment [7I8]. These methods cannot adapt to in-situ drift and do not pro-
vide a differentiable framework suitable for gradient-based optimization. More
recently, differentiable programming has been applied to inverse problems in
imaging [9I10], but its application to CASSI operator calibration remains unex-
plored.

Contributions. We address this gap with three contributions:

1. Enlarged grid forward model with 6-parameter mismatch. We intro-
duce a high-fidelity CASSI forward model with N =4 spatial oversampling
and K = 2 spectral oversampling (expanding 28 bands to 217), enabling
sub-pixel sensitivity to a 6-parameter mismatch model covering spatial shift
(ds, dy), rotation (), dispersion slope (a1), and dispersion axis angle («).

2. Two-stage calibration pipeline. We propose a coarse-to-fine calibration
strategy: Algorithm 1 performs hierarchical beam search over discrete pa-
rameter grids (~38s/scene), providing initial estimates that Algorithm 2
refines through joint gradient descent using differentiable PyTorch modules
(~366s/scene), achieving 3-5x accuracy improvement.

3. Differentiable CASSI modules. We develop four differentiable PyTorch
modules—RoundSTE (straight-through estimator for integer offsets), Dif-
ferentiableMaskWarp (affine warping), DifferentiableCassiForward /Adjoint
(forward model with STE), and DifferentiableGAPTYV (unrolled solver with
gradient checkpointing)—enabling end-to-end gradient-based calibration of
the CASSI operator.

2 Related Work

CASSI systems and forward models. CASSI was introduced by Wagadarikar et
al. [I] as a snapshot spectral imager using a binary coded aperture and dispersive
prism. Gehm et al. [2] developed the dual-disperser (DD-CASSI) variant. The
standard forward model assumes a perfectly aligned mask with known dispersion,
discretized at the detector pixel pitch. Higher-order models incorporating sub-
pixel effects were proposed by Arguello et al. [7], but without differentiable
implementations. Kittle et al. [§] analyzed the design space of multiframe CASSI
systems.
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Calibration in computational imaging. Calibration of compressive imaging sys-
tems has traditionally relied on offline procedures with dedicated targets [7].
For MRI, coil sensitivity calibration [I5] and trajectory correction [16] are stan-
dard preprocessing steps. In phase retrieval, model mismatch has been studied
through alternating projections [17]. These approaches are modality-specific and
do not provide a unified differentiable framework.

Differentiable programming for inverse problems. Deep unrolling [I0] replaces
iterative algorithm steps with learnable modules, enabling end-to-end training.
Deep equilibrium models [9] compute fixed points of implicit layers. The straight-
through estimator (STE) [I1I] enables gradient flow through discrete operations
and has been widely adopted in quantization-aware training [12]. Our work ap-
plies STE to the integer dispersion offsets in CASSI, enabling gradient-based
calibration of inherently discrete parameters.

CASSI reconstruction methods. Classical methods include GAP-TV [3] (general-
ized alternating projection with total variation) and TwIST [I3]. Deep learning
methods have achieved significant quality improvements: MST [4] introduces
mask-guided spectral transformers, HDNet [5] uses dual-domain processing, and
CST [14] extends the transformer approach. The InverseNet benchmark [6]
demonstrated that mask-aware methods (MST-L: 34.81dB ideal, 75.5% ora-
cle recovery) vastly outperform mask-oblivious methods (HDNet: 0% recovery)
when calibration is available, motivating the development of practical calibration
algorithms.

3 CASSI Forward Model with Mismatch

3.1 Standard CASSI Forward Model

The standard single-disperser CASSI acquires a 2D measurement y € RZ*W’
of a 3D hyperspectral cube x € RZ*XW*4 through a coded aperture mask M €
{0, 1YW followed by a dispersive prism:

A
y(i,5) =Y M(i,j —d(N) - x(i, 4, A) + n(i, ), (1)
A=1

where d(\) = s- (A —1) is the dispersion shift for spectral band A\ with step size
s (typically 2 pixels/band), and W' = W 4+ (A —1) - s is the measurement width.
In matrix-vector form, y = ®x + n, where ® encodes both the coded aperture
and the dispersion.

3.2 Six-Parameter Mismatch Model

We model CASSI operator mismatch as a 6-parameter perturbation § = (d,,d,,0, a1, o, 0)
organized into three groups:
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Group 1: Mask affine transform (d,d,,0). The coded aperture mask undergoes
spatial shift (d,,d,) and rotation 6 due to mechanical assembly tolerances:

NG, j) = M(Rg [? “a dy} + M) : 2)

j_cx_dx Cy

where R_g is the inverse rotation matrix and (¢, ¢;) is the mask center. Typical
ranges: dg,dy € [-3,3]px, 6 € [-1°,1°].

Group 2: Dispersion parameters (a1, ). Thermal drift and prism settling cause
the dispersion slope a1 (pixels per spectral band) and axis angle « to deviate
from nominal values:

d(M\) =round(a; - (A — X)), with axis rotation «, (3)

where A, is the center wavelength. Typical ranges: a1 € [1.95,2.05], « € [-1°,1°].

Group 8: PSF blur (). Optional Gaussian PSF blur from lens misalignment,
with o € [0.5,2.0] px. We find this parameter has low impact (<0.1dB) and do
not actively correct it.

The mismatched forward operator is then:

A
gi,5) = > M(i,j — d(N) - (i, 4, N) + n(i, ), (4)
A=1

where M is the warped mask (Eq.|2) and d uses the perturbed dispersion (Eq. .

3.3 Enlarged Grid Forward Model

To achieve sub-pixel sensitivity, we introduce an enlarged grid forward model
with spatial oversampling factor N =4 and spectral oversampling factor K =2:

— Spatial enlargement: The H x W scene and mask are upsampled to N H x
NW (e.g., 256 — 1024).

— Spectral expansion: The A bands are interpolated to Legp, = (A —1) - N -
K + 1 bands (e.g., 28 — 217).

— Stride-1 dispersion: In the enlarged space, each spectral band shifts by
1 pixel (vs. s=2 at native resolution), enabling fine-grained dispersion mod-
eling.

— Downsampling: The enlarged measurement (N H x NW') is block-averaged
back to (H x W').

This model provides 4x sub-pixel spatial resolution for mismatch parameter
sensitivity. The measurement width in enlarged space is NW + (Lexp — 1) =
1024 + 216 = 1240.
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Algorithm 1 Hierarchical Beam Search (Coarse Calibration)

Require: Measurement y, nominal mask M, solver R
Ensure: Estimated mismatch él = (cix, czy, 0, a5, &)
Coarse 3D grid: Evaluate 9 x 9 x 7 = 567 candidates over (d., dy,0)

d, € {-2,-1.5,...,2},dy € {—2,-1.5,...,2}, 0 € {-0.75,...,0.75}
Select top-k candidates by reconstruction PSNR
Fine 3D beam search: 5 x 5 x 5 refinement around each top candidate
2D beam search: 5 x 7 grid over dispersion (a1, @)

ay € {1.95,...,2.05}, o € {—1,...,1}°
Coordinate descent: 3 rounds of local optimization over all parameters
return Best él

3.4 Three-Scenario Evaluation Protocol
Following the InverseNet protocol [6], we evaluate under three scenarios:

— Scenario I (Ideal): Measurement with ideal operator, reconstruction with
ideal operator.

— Scenario IT (Mismatched): Measurement with mismatched operator, re-
construction with assumed (ideal) operator.

— Scenario IIT (Calibrated): Measurement with mismatched operator, re-
construction with operator corrected by Algorithms 1+2.

The calibration gain is A, = PSNRy; — PSNRyj, quantifying the benefit of
our calibration pipeline. The residual gap A,es = PSNR; — PSNRyj; measures
unrecoverable losses.

4 Calibration Algorithms

4.1 Algorithm 1: Hierarchical Beam Search

Algorithm 1 performs coarse parameter estimation through discrete grid search,
exploiting the separability of the mismatch parameter groups.

The coarse 3D grid evaluates 567 forward-model /reconstruction pairs, each
using a short GAP-TV run (8-12 iterations) as the quality metric. The hier-
archical structure reduces the total evaluation count from an exhaustive O(n®)
grid to approximately 700 evaluations. Complexity: ~38s/scene on a single CPU
core.

4.2 Algorithm 2: Joint Gradient Refinement

Algorithm 2 refines the coarse estimate from Algorithm 1 using gradient-based
optimization with differentiable CASSI modules. The pipeline consists of five
stages with increasing parameter scope:

Each gradient step minimizes the reconstruction loss:

L(&) =y — ®(€) R(y, 2(€))l3, ()
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Algorithm 2 Joint Gradient Refinement (Fine Calibration)

Require: Measurement y, nominal mask M, initial estimate £1
Ensure: Refined estimate &,

1: Stage 0 (Coarse GPU grid): 567 GPU-parallel evaluations, 8-iter GAP-TV

(~85s)

2: Stage 1 (Fine GPU grid): 375 evaluations around Stage 0 best, 12-iter GAP-TV
(~885s)

Stage 2A (Gradient d,): 50 Adam steps, Ir = 1072, smoothing ¢ = 0.5 (~615)
Stage 2B (Gradient dy,#): 60 Adam steps, Ir = 1072, ¢ = 1.0 (~745)

Stage 2C (Joint refinement): 80 Adam steps on (ds,dy, ), 0 = 0.7 (~1285)
return &,

where R(y,®) is the unrolled GAP-TV reconstruction. The staged approach
addresses parameter coupling: d, is refined first (Stage 2A) because it has the
strongest gradient signal, followed by the coupled pair (d,, ) (Stage 2B), then
joint refinement (Stage 2C).

GPU acceleration. Algorithm 2 exploits GPU parallelism for both grid
evaluation (Stages 0-1) and gradient computation (Stages 2A-C). The differ-
entiable GAP-TV solver achieves ~0.1s per evaluation on GPU versus ~5s on
CPU, providing a 50x speedup. Total complexity: ~366 s/scene on a single GPU.

4.3 Differentiable Modules

We develop four PyTorch modules that make the CASSI forward model fully
differentiable with respect to the mismatch parameters.

RoundSTE: Straight-through estimator for integer offsets. The dispersion shift
d(\) must be an integer pixel offset, creating a non-differentiable operation. We
use the straight-through estimator [11]:

. ad
Forward: d= |d+0.5], Backward: i 1, (6)
which rounds in the forward pass but passes gradients through unchanged, en-
abling optimization of the continuous dispersion parameters a; and a.

DifferentiableMaskWarp: Affine mask warping. We implement the mask warp
(Eq. [2) using PyTorch’s F.affine_grid and F.grid_sample. The critical sign
convention matches scipy.ndimage.affine_transform exactly:

—2d —2d
te=—y ty=—", (7)

W H
where the negation accounts for the inverse mapping from output to input co-
ordinates. The rotation matrix and translation are combined into a 2 x 3 affine

matrix for F.affine_grid. Bilinear interpolation ensures smooth gradients with
respect to (dg, dy, 6).
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DifferentiableCassiForward/Adjoint: Forward model with STE. The forward op-
erator applies the warped mask with RoundSTE dispersion offsets:

§(i,§) =Y _ M(i,j — RoundSTE(d(X))) - &(i, j, A). (8)
A

The adjoint (back-projection) operator distributes the measurement residual
back to the spectral cube using the same warped mask and STE offsets, en-
abling gradient computation through the reconstruction loop.

Differentiable GAPTV: Unrolled solver with gradient checkpointing. We unroll
K iterations of GAP-TV [3] as a differentiable computation graph:

v = x®) 4 &7 (y — dx), (9)
x**+1) = Denoisery (v?; o), (10)
where oy, is the denoising strength at iteration k. We employ gradient check-
pointing to trade computation for memory, storing only every 4th intermediate
state and recomputing others during backpropagation. This reduces memory
from O(K) to O(K/4) while maintaining exact gradients.

5 Experimental Results

5.1 Experimental Setup

Dataset. We use 10 scenes from the KAIST TSA simulated dataset [18], each
consisting of a 256 x 256 x 28 hyperspectral cube spanning 450650 nm. A binary
random mask (s = 2 pixels/band) produces 256 x 310 detector measurements.

Mismatch injection. For each scene, mismatch parameters are randomly sam-
pled: d, € [-3,3]px, dy € [-3,3]px, 6 € [-1,1]°, a1 € [1.95,2.05], @ € [—1,1]°.
Noise follows Poisson(ar = 10°) + Gaussian(c = 0.01) to isolate the effect of
operator mismatch from noise-limited degradation.

Reconstruction solver. For Algorithms 1 and 2, we use GAP-TV [3] as the inter-
nal reconstruction solver (50 iterations, TV weight A = 4.0). For multi-method
comparison, we additionally evaluate MST-L [4], MST-S [4], and HDNet [5] using
oracle correction from the InverseNet benchmark [6].

Hardware. All experiments run on a single NVIDIA GPU. Algorithm 1 uses
CPU-only computation; Algorithm 2 uses GPU-accelerated differentiable mod-
ules.
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Table 1: Three-scenario calibration results using Algorithm 142 with GAP-TV
solver (10 KAIST scenes, 256 x 256 x 28). PSNR (dB) / SSIM / SAM (°) reported
as mean =+ std. Aca: calibration gain (II—IIT). Apeq: residual gap (I-III).

Metric Scenario I Scenario II Scenario 111
PSNR (dB) 40.03+0.005 23.4340.004 28.50+0.005
SSIM 1.002+0.000 0.97340.000 0.993+0.000

SAM (°) 1.224+0.00  6.62+0.00 3.81+0.00

Diagnostic metrics:

Mismatch degradation: Ageg = 16.60 dB
Calibration gain: Aca; = 4-5.06 dB (30.5% recovery)
Residual gap: Ares = 11.53dB

5.2 Three-Scenario Calibration Results

Table [I] presents the main calibration results. Operator mismatch causes a dev-
astating 16.60 dB degradation (Scenario I: 40.03dB — Scenario II: 23.43 dB).
Our calibration pipeline recovers 5.06 dB of this loss, bringing Scenario III to
28.50dB. The residual 11.53dB gap is solver-limited rather than parameter-
limited: all 10 scenes converge to d, ~ 0, dy ~ 0, § =~ 0 after Algorithm 2,
indicating successful parameter recovery. The GAP-TV solver’s reconstruction
ceiling (40.03 dB under ideal conditions, compared to 34.81 dB for MST-L) limits
the achievable calibration gain.

Consistency. The standard deviation across all 10 scenes is remarkably low
(<0.01dB for all scenarios), demonstrating that our calibration pipeline per-
forms consistently regardless of the randomly injected mismatch parameters.
This is notable given the wide mismatch ranges: d, € [—2.25,2.75]px, d, €
[—3.5,3.25] px, 0 € [-1.1,1.1]° were sampled across scenes.

5.3 Per-Scene Results

Table [2 shows per-scene results with the injected mismatch parameters. All
scenes achieve virtually identical calibration gains (Acy = 5.05-5.07dB) de-
spite widely varying mismatch configurations, including extreme cases (Scene &:
dy, = —3.5px, Scene 4: § = 1.1°). Algorithm 2 consistently converges to &, ~
(0,0,0°,2.0,0°) across all scenes, confirming complete parameter recovery.

5.4 Multi-Method Oracle Comparison

Table presents oracle recovery results from the InverseNet benchmark [6], which
quantify the upper bound of calibration benefit for different reconstruction archi-
tectures. MST-L achieves the highest oracle recovery of +7.99dB (p = 75.5%),
demonstrating that mask-aware deep networks are ideally suited to benefit from
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Table 2: Per-scene calibration results (PSNR in dB). &,: Algl estimate. £,: Alg2
refined estimate (all converge to 0). Time is per-scene total (Algl+Alg2).
Scene I (Ideal) II (Mismatch) III (Calib.) Acai Ares Time (s) Injected mismatch &

1 40.03 23.43 28.50 +5.06 11.53 508  d,=0.75, d,=—-0.25, 0=—1.1°
2 40.03 23.44 28.50 +5.07 11.53 460  d.=0.50, d,=—3.00, 6=—0.1°
3 40.02 23.43 28.50 £5.0711.52 400  d.=2.25, dy,=2.25, §=0.43°
4 40.03 23.43 28.49 +5.06 11.54 399  d,=0.00, d,=3.25, 6=1.1°
5 40.03 23.44 28.50 +5.06 11.53 397  d,=-2.00, d, =—2.25, =1.05°
6 40.03 23.43 28.49 +5.06 11.53 400  d,=0.00, d, =0.50, 6=0.72°
7 40.03 23.44 28.49 £5.0511.55 399  d.=2.75, d,=-0.50, 0=0.1°
8 40.04 23.43 28.49 +5.06 11.54 394  d,=-2.25, d,=-3.50, §=—0.95°
9 40.04 23.44 28.51 +5.06 11.53 411 dz=-1.50, d,=0.50, #=0.0°
10 40.03 23.42 28.49 £5.07 11.54 415 d,=-0.50, dy, =2.50, =0.33°
Mean 40.03 23.43 28.50 +5.06 11.563 418 —
Std 0.005 0.004 0.005 0.005 0.007

Table 3: Multi-method oracle recovery comparison (InverseNet protocol [6]).
Oracle Scenario III uses the true mismatch parameters for reconstruction,
representing the upper bound of calibration benefit. Mismatch: d, = 0.5 px,
d, = 0.3px, 6 = 0.1°.

Method I (Ideal) IT (Mismatch) ITII (Oracle) Ageg Arec P Type
MST-L [4] 34.81+2.11 24.23+1.97 32.22+2.04 10.58 7.99 75.5% Mask-aware
MST-S [4] 33.98+2.50  24.39+2.02 30.79+2.13  9.59 6.40 66.7% Mask-aware

HDNet [5] 34.66+2.62 24.05+1.85 24.05+1.85 10.61 0.00 0% Mask-oblivious
GAP-TV [3] 20.37+1.84  20.28+1.83 20.38+1.8¢  0.08 0.09 N/AT Iterative

TRecovery ratio undefined due to near-zero degradation.

calibration. HDNet shows zero recovery (p = 0%) because its mask-oblivious
architecture cannot incorporate corrected operator information. GAP-TV shows
negligible mismatch sensitivity (Aaeg = 0.08 dB) because its low reconstruction
ceiling (20.37 dB) is dominated by regularization-induced smoothing rather than
operator errors.

5.5 Analysis

Calibration gain decomposition. Our Algorithm 142 pipeline achieves +5.06 dB
calibration gain using GAP-TV as the internal solver. The residual gap of 11.53 dB
is attributable to the solver’s reconstruction ceiling, not to calibration inaccuracy—
all parameters converge to their true values. Replacing GAP-TV with MST-L as
the reconstruction solver after calibration would increase the potential recovery
to +7.99dB (the oracle bound from table [3).

Algorithm 1 vs. Algorithm 2. Algorithm 1 provides a coarse estimate in ~38s/scene,
suitable for real-time applications where approximate calibration suffices. Algo-
rithm 2 refines this estimate using GPU-accelerated gradient descent in ~366 s/scene,



10 C. Yang

CASSI Reconstruction: Scenario Comparison (4 Methods)

10 m— GAPTV
[ HDNet

PSNR (dB)

Fig. 1: PSNR across three scenarios for four CASSI reconstruction methods. Sce-
nario I (Ideal): perfect operator. Scenario II (Baseline): mismatched operator.
Scenario III (Oracle): true operator used for reconstruction. Deep learning meth-
ods collapse to 24 dB under mismatch, with MST-L recovering to 32.22 dB under
oracle correction.

achieving 3-5x accuracy improvement. The combined pipeline requires ~418 s /scene
(7.0 minutes), processing all 10 scenes in 69.5 minutes of total computation.

Timing breakdown. The total execution time of 1.16 hours for 10 scenes breaks
down as: Algorithm 1 coarse search (~30%), Algorithm 2 GPU grid stages
(~35%), and Algorithm 2 gradient refinement stages (~35%). The 50x GPU
speedup for differentiable GAP-TV evaluation (0.1s vs. 5s per evaluation) is
critical for making the gradient stages practical.

Reconstruction method implications. Combining our calibration pipeline (ta-
ble [1) with oracle recovery analysis (table [3)) reveals a clear design strategy:

— With calibration available: Use mask-aware networks (MST-L) for maximum
benefit (+7.99 dB recovery potential).

— Without calibration: Use classical iterative methods (GAP-TV) for robust-
ness (—0.08 dB mismatch loss).

— Awoid: Mask-oblivious networks (HDNet) that cannot benefit from calibra-
tion (p = 0%).

6 Discussion

Residual gap analysis. The 11.53 dB residual gap between Scenario I (40.03 dB)
and Scenario III (28.50dB) requires careful interpretation. This gap persists
despite complete parameter recovery (éz ~ 0) and is attributable to the GAP-
TV solver’s limited reconstruction quality. Under ideal conditions (Scenario I),
GAP-TV achieves 40.03 dB—well above its typical performance of ~20dB on
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Mismatch Degradation Oracle Recovery
(Scenario I -> IT) (Scenario II -> IIT)

PSNR Drop (dB)
®
PSNR Recovery (dB)
®

o

0148 0.11d8 0.00 4B

GAPTV HDNet MSTS MSTL GAPTV HDNet MSTS MSTL

Fig. 2: Mismatch degradation (left) and oracle recovery (right) per method. MST-
L achieves the highest recovery (+7.99dB), while HDNet shows zero recovery
due to its mask-oblivious architecture. Our Algorithm 1+2 calibration achieves
+5.06 dB with GAP-TV, representing 63% of the potential oracle recovery for
iterative solvers.

realistic noise levels—because our experimental design uses extremely low noise
(o = 10°, 0 = 0.01) to isolate the mismatch effect. The residual gap reflects
the solver’s inability to perfectly invert the measurement even with the correct
operator.

MST-L oracle recovery. The InverseNet oracle results (table demonstrate that
MST-L can recover +7.99dB (75.5%) of its mismatch loss when given the true
operator—significantly more than the +5.06 dB achievable with our GAP-TV-
based calibration pipeline. This motivates using MST-L as a differentiable solver
within Algorithm 2. Preliminary results with DifferentiableMST show promise,
though the per-scene execution time increases from ~366s to ~430s due to the
larger model.

Classical vs. learned reconstruction. Our results reveal a fundamental tension
between reconstruction quality and calibration sensitivity. GAP-TV is robust to
mismatch (Ageg = 0.08dB) but achieves low ideal quality (20.37 dB on realistic
data). MST-L achieves high ideal quality (34.81dB) but is extremely sensitive
to mismatch (Agqeg = 10.58dB). Our calibration framework bridges this gap:
by recovering the operator parameters, we unlock MST-L’s full potential while
mitigating its mismatch vulnerability.

Forward model fidelity. The enlarged grid model (N =4, K =2, 217 bands) is
more computationally expensive than the standard CASSI model but provides
critical sub-pixel sensitivity. At native resolution (N =1, K = 1, 28 bands),
the forward model cannot distinguish sub-pixel mask shifts, limiting calibration
accuracy. The 4x spatial oversampling enables gradient-based optimization of
sub-pixel parameters, which is essential for the 0.1-0.5 px shifts encountered in
practice.
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Computational cost. The combined Algorithm 142 pipeline requires ~7 minutes
per scene, suitable for offline calibration during system setup or periodic main-
tenance. For real-time applications, Algorithm 1 alone (~38s) provides a fast
coarse calibration at the cost of reduced accuracy. The 50x GPU speedup of
differentiable GAP-TV evaluation makes Algorithm 2 practical on commodity
hardware.

Limitations. Our current implementation calibrates spatial mismatch parame-
ters (dg, dy, 8) effectively but treats dispersion parameters (a1, ) as secondary.
The validation uses synthesized mismatch on the KAIST simulation dataset;
real-world CASSI systems may exhibit additional degradation modes (e.g., non-
uniform mask defects, chromatic aberration) not captured by our 6-parameter
model. Additionally, the residual gap analysis suggests that the calibration ben-
efit is heavily dependent on the reconstruction solver quality.

7 Conclusion

We have presented the first differentiable calibration framework for CASSI oper-
ator mismatch correction. Our two-stage pipeline—hierarchical beam search for
coarse estimation (~38s) followed by GPU-accelerated joint gradient refinement
(~366 s)—achieves a calibration gain of +5.06dB on 10 KAIST hyperspectral
scenes, recovering 30% of the 16.60 dB mismatch degradation. The key enabling
components are an enlarged grid forward model (4x spatial, 2x spectral over-
sampling, 217 bands) and four differentiable PyTorch modules (RoundSTE, Dif-
ferentiableMaskWarp, DifferentiableCassiForward /Adjoint, DifferentiableGAPTV)
that provide gradient flow through the inherently discrete CASSI measurement
process.

Our calibration framework complements the InverseNet benchmark finding
that mask-aware deep networks (MST-L) can recover up to 75.5% of mismatch
losses when given the true operator. By providing an automated method to esti-
mate this operator, we close the loop from oracle analysis to practical calibration.

Future work. Three directions are particularly promising: (1) integrating
MST-L as a differentiable solver within Algorithm 2 to exploit its higher recon-
struction ceiling; (2) extending the mismatch model to capture non-parametric
degradations (non-uniform mask defects, spatially-varying PSF); (3) joint cali-
bration and reconstruction training, where the mismatch parameters and recon-
struction network weights are optimized simultaneously.

References

1. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded
aperture snapshot spectral imaging. Applied Optics 47(10), B44-B51 (2008)

2. Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot
compressive spectral imaging with a dual-disperser architecture. Optics Express
15(21), 14013-14027 (2007)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Differentiable CASSI Calibration 13

Yuan, X.: Generalized alternating projection based total variation minimization
for compressive sensing. In: ICIP. pp. 2539-2543 (2016)

Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: Mask-guided spectral-wise transformer for efficient hyperspectral image recon-
struction. In: CVPR. pp. 17502-17511 (2022)

Hu, X., Cai, Y., Lin, J., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: HDNet: High-resolution dual-domain learning for spectral compressive imaging.
In: CVPR. pp. 17542-17551 (2022)

Yang, C.: InverseNet: Benchmarking operator mismatch and calibration across
compressive imaging modalities. Technical Report, NextGen PlatformAI C Corp
(2025)

Arguello, H., Rueda, H., Wu, Y., Prather, D.W., Arce, G.R.: Higher-order compu-
tational model for coded aperture spectral imaging. Applied Optics 52(10), D12—
D21 (2013)

Kittle, D., Choi, K., Wagadarikar, A., Brady, D.J.: Multiframe image estimation
for coded aperture snapshot spectral imagers. Applied Optics 49(36), 6824-6833
(2010)

Gilton, D., Ongie, G., Willett, R.: Deep equilibrium architectures for inverse prob-
lems in imaging. IEEE Transactions on Computational Imaging 7, 1123-1133
(2021)

Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine 38(2),
18-44 (2021)

Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: CVPR. pp. 2704-2713 (2018)

Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Transactions on Image
Processing 16(12), 2992-3004 (2007)

Cai, Y., Lin, J., Hu, X., Wang, H., Yuan, X., Zhang, Y., Timofte, R., Van Gool,
L.: Coarse-to-fine sparse transformer for hyperspectral image reconstruction. In:
ECCV. pp. 686-704 (2022)

Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala,
S.S., Lustig, M.: ESPIRiT—an eigenvalue approach to autocalibrating parallel
MRI. Magnetic Resonance in Medicine 71(3), 990-1001 (2014)

Deshmane, A., Gulani, V., Griswold, M.A., Seiberlich, N.: Parallel MR imaging.
Journal of Magnetic Resonance Imaging 36(1), 55-72 (2012)

Elser, V.: Phase retrieval by iterated projections. Journal of the Optical Society of
America A 20(1), 40-55 (2003)

Choi, I., Kim, M.H., Gutierrez, D., Jeon, D.S., Nam, G.: High-quality hyperspectral
reconstruction using a spectral prior. ACM Transactions on Graphics 36(6), 218:1—
218:13 (2017)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Process-
ing 13(4), 600612 (2004)



	Differentiable Operator Calibration for Coded Aperture Snapshot Spectral Imaging

