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Abstract. Coded aperture snapshot spectral imaging (CASSI) acquires
hyperspectral data cubes in a single shot but requires accurate knowl-
edge of the forward measurement operator�the coded aperture mask po-
sition, orientation, and dispersive element parameters�for high-quality
reconstruction. In practice, manufacturing tolerances and assembly drift
introduce operator mismatch that degrades reconstruction by 10�17 dB.
We present a di�erentiable calibration framework that models CASSI
mismatch as a 6-parameter perturbation (spatial shift, rotation, disper-
sion slope and axis angle) and recovers these parameters through a two-
stage pipeline: (1) a hierarchical beam search over a coarse parameter
grid (∼38 s/scene), followed by (2) a joint gradient re�nement using dif-
ferentiable PyTorch modules�including a straight-through estimator for
integer dispersion o�sets and an unrolled GAP-TV solver with gradient
checkpointing (∼366 s/scene). Central to our approach is an enlarged
grid forward model with 4× spatial and 2× spectral oversampling (217
bands), providing sub-pixel sensitivity to mismatch parameters. Vali-
dated on 10 KAIST hyperspectral scenes under a three-scenario protocol,
our method achieves a calibration gain of +5.06dB, recovering 30% of
the 16.60 dB mismatch loss. When combined with oracle correction us-
ing mask-aware deep networks (MST-L), the recovery reaches +7.99dB
(75.5% of mismatch loss), demonstrating the synergy between calibration
and learned reconstruction.

Keywords: CASSI · Operator calibration · Di�erentiable programming
· Hyperspectral imaging · Mismatch correction · Computational imaging

1 Introduction

Coded aperture snapshot spectral imaging (CASSI) acquires a three-dimensional
hyperspectral data cube x ∈ RH×W×Λ from a single two-dimensional measure-
ment y ∈ RH×W ′

by encoding spectral information through a binary coded
aperture followed by a dispersive prism [1,2]. Computational reconstruction algo-
rithms then recover the hyperspectral cube from this compressed measurement,
exploiting sparsity in appropriate transform domains [3,4].

The quality of CASSI reconstruction depends critically on accurate knowl-
edge of the forward measurement operator Φ�the mapping from scene to mea-
surement de�ned by the coded aperture mask position, orientation, and disper-
sive element parameters. In practice, the assumed operator Φ̂ inevitably di�ers
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from the true physical operator Φ due to manufacturing tolerances, mechanical
assembly errors, thermal drift, and optical alignment imprecision. Even moderate
misalignment�0.5 pixels of mask shift and 0.1◦ of rotation�can degrade peak
signal-to-noise ratio (PSNR) by over 10 dB [1], erasing the quality advantage
of state-of-the-art deep learning reconstruction methods [4,5]. As demonstrated
by the InverseNet benchmark [6], operator mismatch reduces all deep learning
methods to a narrow 24�25 dB performance band regardless of their 10+ dB
spread under ideal conditions.

Current CASSI calibration approaches are predominantly o�ine procedures
requiring dedicated calibration targets (checkerboards, spectral lamps) and man-
ual alignment [7,8]. These methods cannot adapt to in-situ drift and do not pro-
vide a di�erentiable framework suitable for gradient-based optimization. More
recently, di�erentiable programming has been applied to inverse problems in
imaging [9,10], but its application to CASSI operator calibration remains unex-
plored.

Contributions. We address this gap with three contributions:

1. Enlarged grid forward model with 6-parameter mismatch.We intro-
duce a high-�delity CASSI forward model with N =4 spatial oversampling
and K = 2 spectral oversampling (expanding 28 bands to 217), enabling
sub-pixel sensitivity to a 6-parameter mismatch model covering spatial shift
(dx, dy), rotation (θ), dispersion slope (a1), and dispersion axis angle (α).

2. Two-stage calibration pipeline. We propose a coarse-to-�ne calibration
strategy: Algorithm 1 performs hierarchical beam search over discrete pa-
rameter grids (∼38 s/scene), providing initial estimates that Algorithm 2
re�nes through joint gradient descent using di�erentiable PyTorch modules
(∼366 s/scene), achieving 3�5× accuracy improvement.

3. Di�erentiable CASSI modules. We develop four di�erentiable PyTorch
modules�RoundSTE (straight-through estimator for integer o�sets), Dif-
ferentiableMaskWarp (a�ne warping), Di�erentiableCassiForward/Adjoint
(forward model with STE), and Di�erentiableGAPTV (unrolled solver with
gradient checkpointing)�enabling end-to-end gradient-based calibration of
the CASSI operator.

2 Related Work

CASSI systems and forward models. CASSI was introduced by Wagadarikar et
al. [1] as a snapshot spectral imager using a binary coded aperture and dispersive
prism. Gehm et al. [2] developed the dual-disperser (DD-CASSI) variant. The
standard forward model assumes a perfectly aligned mask with known dispersion,
discretized at the detector pixel pitch. Higher-order models incorporating sub-
pixel e�ects were proposed by Arguello et al. [7], but without di�erentiable
implementations. Kittle et al. [8] analyzed the design space of multiframe CASSI
systems.
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Calibration in computational imaging. Calibration of compressive imaging sys-
tems has traditionally relied on o�ine procedures with dedicated targets [7].
For MRI, coil sensitivity calibration [15] and trajectory correction [16] are stan-
dard preprocessing steps. In phase retrieval, model mismatch has been studied
through alternating projections [17]. These approaches are modality-speci�c and
do not provide a uni�ed di�erentiable framework.

Di�erentiable programming for inverse problems. Deep unrolling [10] replaces
iterative algorithm steps with learnable modules, enabling end-to-end training.
Deep equilibrium models [9] compute �xed points of implicit layers. The straight-
through estimator (STE) [11] enables gradient �ow through discrete operations
and has been widely adopted in quantization-aware training [12]. Our work ap-
plies STE to the integer dispersion o�sets in CASSI, enabling gradient-based
calibration of inherently discrete parameters.

CASSI reconstruction methods. Classical methods include GAP-TV [3] (general-
ized alternating projection with total variation) and TwIST [13]. Deep learning
methods have achieved signi�cant quality improvements: MST [4] introduces
mask-guided spectral transformers, HDNet [5] uses dual-domain processing, and
CST [14] extends the transformer approach. The InverseNet benchmark [6]
demonstrated that mask-aware methods (MST-L: 34.81 dB ideal, 75.5% ora-
cle recovery) vastly outperform mask-oblivious methods (HDNet: 0% recovery)
when calibration is available, motivating the development of practical calibration
algorithms.

3 CASSI Forward Model with Mismatch

3.1 Standard CASSI Forward Model

The standard single-disperser CASSI acquires a 2D measurement y ∈ RH×W ′

of a 3D hyperspectral cube x ∈ RH×W×Λ through a coded aperture mask M ∈
{0, 1}H×W followed by a dispersive prism:

y(i, j) =

Λ∑
λ=1

M(i, j − d(λ)) · x(i, j, λ) + n(i, j), (1)

where d(λ) = s · (λ− 1) is the dispersion shift for spectral band λ with step size
s (typically 2 pixels/band), and W ′ = W +(Λ−1) · s is the measurement width.
In matrix-vector form, y = Φx + n, where Φ encodes both the coded aperture
and the dispersion.

3.2 Six-Parameter Mismatch Model

Wemodel CASSI operator mismatch as a 6-parameter perturbation ξ = (dx, dy, θ, a1, α, σ)
organized into three groups:
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Group 1: Mask a�ne transform (dx, dy, θ). The coded aperture mask undergoes
spatial shift (dx, dy) and rotation θ due to mechanical assembly tolerances:

M̃(i, j) = M

(
R−θ

[
i− cy − dy
j − cx − dx

]
+

[
cy
cx

])
, (2)

where R−θ is the inverse rotation matrix and (cy, cx) is the mask center. Typical
ranges: dx, dy ∈ [−3, 3] px, θ ∈ [−1◦, 1◦].

Group 2: Dispersion parameters (a1, α). Thermal drift and prism settling cause
the dispersion slope a1 (pixels per spectral band) and axis angle α to deviate
from nominal values:

d(λ) = round(a1 · (λ− λc)), with axis rotation α, (3)

where λc is the center wavelength. Typical ranges: a1 ∈ [1.95, 2.05], α ∈ [−1◦, 1◦].

Group 3: PSF blur (σ). Optional Gaussian PSF blur from lens misalignment,
with σ ∈ [0.5, 2.0] px. We �nd this parameter has low impact (<0.1 dB) and do
not actively correct it.

The mismatched forward operator is then:

ỹ(i, j) =

Λ∑
λ=1

M̃(i, j − d̃(λ)) · x(i, j, λ) + n(i, j), (4)

where M̃ is the warped mask (Eq. 2) and d̃ uses the perturbed dispersion (Eq. 3).

3.3 Enlarged Grid Forward Model

To achieve sub-pixel sensitivity, we introduce an enlarged grid forward model
with spatial oversampling factor N=4 and spectral oversampling factor K=2:

� Spatial enlargement: The H×W scene and mask are upsampled to NH×
NW (e.g., 256 → 1024).

� Spectral expansion: The Λ bands are interpolated to Lexp = (Λ− 1) ·N ·
K + 1 bands (e.g., 28 → 217).

� Stride-1 dispersion: In the enlarged space, each spectral band shifts by
1 pixel (vs. s=2 at native resolution), enabling �ne-grained dispersion mod-
eling.

� Downsampling: The enlarged measurement (NH×NW ′) is block-averaged
back to (H ×W ′).

This model provides 4× sub-pixel spatial resolution for mismatch parameter
sensitivity. The measurement width in enlarged space is NW + (Lexp − 1) =
1024 + 216 = 1240.
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Algorithm 1 Hierarchical Beam Search (Coarse Calibration)

Require: Measurement y, nominal mask M, solver R
Ensure: Estimated mismatch ξ̂1 = (d̂x, d̂y, θ̂, â1, α̂)
1: Coarse 3D grid: Evaluate 9× 9× 7 = 567 candidates over (dx, dy, θ)
2: dx ∈ {−2,−1.5, . . . , 2}, dy ∈ {−2,−1.5, . . . , 2}, θ ∈ {−0.75, . . . , 0.75}
3: Select top-k candidates by reconstruction PSNR
4: Fine 3D beam search: 5× 5× 5 re�nement around each top candidate
5: 2D beam search: 5× 7 grid over dispersion (a1, α)
6: a1 ∈ {1.95, . . . , 2.05}, α ∈ {−1, . . . , 1}◦
7: Coordinate descent: 3 rounds of local optimization over all parameters
8: return Best ξ̂1

3.4 Three-Scenario Evaluation Protocol

Following the InverseNet protocol [6], we evaluate under three scenarios:

� Scenario I (Ideal): Measurement with ideal operator, reconstruction with
ideal operator.

� Scenario II (Mismatched): Measurement with mismatched operator, re-
construction with assumed (ideal) operator.

� Scenario III (Calibrated): Measurement with mismatched operator, re-
construction with operator corrected by Algorithms 1+2.

The calibration gain is ∆cal = PSNRIII −PSNRII, quantifying the bene�t of
our calibration pipeline. The residual gap ∆res = PSNRI − PSNRIII measures
unrecoverable losses.

4 Calibration Algorithms

4.1 Algorithm 1: Hierarchical Beam Search

Algorithm 1 performs coarse parameter estimation through discrete grid search,
exploiting the separability of the mismatch parameter groups.

The coarse 3D grid evaluates 567 forward-model/reconstruction pairs, each
using a short GAP-TV run (8�12 iterations) as the quality metric. The hier-
archical structure reduces the total evaluation count from an exhaustive O(n5)
grid to approximately 700 evaluations. Complexity: ∼38 s/scene on a single CPU
core.

4.2 Algorithm 2: Joint Gradient Re�nement

Algorithm 2 re�nes the coarse estimate from Algorithm 1 using gradient-based
optimization with di�erentiable CASSI modules. The pipeline consists of �ve
stages with increasing parameter scope:

Each gradient step minimizes the reconstruction loss:

L(ξ) = ∥y −Φ(ξ)R(y,Φ(ξ))∥22, (5)
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Algorithm 2 Joint Gradient Re�nement (Fine Calibration)

Require: Measurement y, nominal mask M, initial estimate ξ̂1

Ensure: Re�ned estimate ξ̂2

1: Stage 0 (Coarse GPU grid): 567 GPU-parallel evaluations, 8-iter GAP-TV
(∼85 s)

2: Stage 1 (Fine GPU grid): 375 evaluations around Stage 0 best, 12-iter GAP-TV
(∼88 s)

3: Stage 2A (Gradient dx): 50 Adam steps, lr = 10−2, smoothing σ = 0.5 (∼61 s)
4: Stage 2B (Gradient dy, θ): 60 Adam steps, lr = 10−2, σ = 1.0 (∼74 s)
5: Stage 2C (Joint re�nement): 80 Adam steps on (dx, dy, θ), σ = 0.7 (∼128 s)
6: return ξ̂2

where R(y,Φ) is the unrolled GAP-TV reconstruction. The staged approach
addresses parameter coupling: dx is re�ned �rst (Stage 2A) because it has the
strongest gradient signal, followed by the coupled pair (dy, θ) (Stage 2B), then
joint re�nement (Stage 2C).

GPU acceleration. Algorithm 2 exploits GPU parallelism for both grid
evaluation (Stages 0�1) and gradient computation (Stages 2A�C). The di�er-
entiable GAP-TV solver achieves ∼0.1 s per evaluation on GPU versus ∼5 s on
CPU, providing a 50× speedup. Total complexity: ∼366 s/scene on a single GPU.

4.3 Di�erentiable Modules

We develop four PyTorch modules that make the CASSI forward model fully
di�erentiable with respect to the mismatch parameters.

RoundSTE: Straight-through estimator for integer o�sets. The dispersion shift
d(λ) must be an integer pixel o�set, creating a non-di�erentiable operation. We
use the straight-through estimator [11]:

Forward: d̂ = ⌊d+ 0.5⌋, Backward:
∂d̂

∂d
= 1, (6)

which rounds in the forward pass but passes gradients through unchanged, en-
abling optimization of the continuous dispersion parameters a1 and α.

Di�erentiableMaskWarp: A�ne mask warping. We implement the mask warp
(Eq. 2) using PyTorch's F.affine_grid and F.grid_sample. The critical sign
convention matches scipy.ndimage.affine_transform exactly:

tx =
−2 dx
W

, ty =
−2 dy
H

, (7)

where the negation accounts for the inverse mapping from output to input co-
ordinates. The rotation matrix and translation are combined into a 2× 3 a�ne
matrix for F.affine_grid. Bilinear interpolation ensures smooth gradients with
respect to (dx, dy, θ).
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Di�erentiableCassiForward/Adjoint: Forward model with STE. The forward op-
erator applies the warped mask with RoundSTE dispersion o�sets:

ŷ(i, j) =
∑
λ

M̃(i, j − RoundSTE(d̃(λ))) · x̂(i, j, λ). (8)

The adjoint (back-projection) operator distributes the measurement residual
back to the spectral cube using the same warped mask and STE o�sets, en-
abling gradient computation through the reconstruction loop.

Di�erentiableGAPTV: Unrolled solver with gradient checkpointing. We unroll
K iterations of GAP-TV [3] as a di�erentiable computation graph:

v(k) = x(k) +ΦT (y −Φx(k)), (9)

x(k+1) = DenoiseTV(v
(k);σk), (10)

where σk is the denoising strength at iteration k. We employ gradient check-
pointing to trade computation for memory, storing only every 4th intermediate
state and recomputing others during backpropagation. This reduces memory
from O(K) to O(K/4) while maintaining exact gradients.

5 Experimental Results

5.1 Experimental Setup

Dataset. We use 10 scenes from the KAIST TSA simulated dataset [18], each
consisting of a 256×256×28 hyperspectral cube spanning 450�650 nm. A binary
random mask (s = 2 pixels/band) produces 256× 310 detector measurements.

Mismatch injection. For each scene, mismatch parameters are randomly sam-
pled: dx ∈ [−3, 3] px, dy ∈ [−3, 3] px, θ ∈ [−1, 1]◦, a1 ∈ [1.95, 2.05], α ∈ [−1, 1]◦.
Noise follows Poisson(α = 105) + Gaussian(σ = 0.01) to isolate the e�ect of
operator mismatch from noise-limited degradation.

Reconstruction solver. For Algorithms 1 and 2, we use GAP-TV [3] as the inter-
nal reconstruction solver (50 iterations, TV weight λ = 4.0). For multi-method
comparison, we additionally evaluate MST-L [4], MST-S [4], and HDNet [5] using
oracle correction from the InverseNet benchmark [6].

Hardware. All experiments run on a single NVIDIA GPU. Algorithm 1 uses
CPU-only computation; Algorithm 2 uses GPU-accelerated di�erentiable mod-
ules.
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Table 1: Three-scenario calibration results using Algorithm 1+2 with GAP-TV
solver (10 KAIST scenes, 256×256×28). PSNR (dB) / SSIM / SAM (◦) reported
as mean ± std. ∆cal: calibration gain (II→III). ∆res: residual gap (I−III).

Metric Scenario I Scenario II Scenario III

PSNR (dB) 40.03±0.005 23.43±0.004 28.50±0.005

SSIM 1.002±0.000 0.973±0.000 0.993±0.000

SAM (◦) 1.22±0.00 6.62±0.00 3.81±0.00

Diagnostic metrics:
Mismatch degradation: ∆deg = 16.60dB
Calibration gain: ∆cal = +5.06dB (30.5% recovery)
Residual gap: ∆res = 11.53dB

5.2 Three-Scenario Calibration Results

Table 1 presents the main calibration results. Operator mismatch causes a dev-
astating 16.60 dB degradation (Scenario I: 40.03 dB → Scenario II: 23.43 dB).
Our calibration pipeline recovers 5.06 dB of this loss, bringing Scenario III to
28.50 dB. The residual 11.53 dB gap is solver-limited rather than parameter-
limited: all 10 scenes converge to dx ≈ 0, dy ≈ 0, θ ≈ 0 after Algorithm 2,
indicating successful parameter recovery. The GAP-TV solver's reconstruction
ceiling (40.03 dB under ideal conditions, compared to 34.81 dB for MST-L) limits
the achievable calibration gain.

Consistency. The standard deviation across all 10 scenes is remarkably low
(<0.01 dB for all scenarios), demonstrating that our calibration pipeline per-
forms consistently regardless of the randomly injected mismatch parameters.
This is notable given the wide mismatch ranges: dx ∈ [−2.25, 2.75]px, dy ∈
[−3.5, 3.25] px, θ ∈ [−1.1, 1.1]◦ were sampled across scenes.

5.3 Per-Scene Results

Table 2 shows per-scene results with the injected mismatch parameters. All
scenes achieve virtually identical calibration gains (∆cal = 5.05�5.07 dB) de-
spite widely varying mismatch con�gurations, including extreme cases (Scene 8:

dy = −3.5px, Scene 4: θ = 1.1◦). Algorithm 2 consistently converges to ξ̂2 ≈
(0, 0, 0◦, 2.0, 0◦) across all scenes, con�rming complete parameter recovery.

5.4 Multi-Method Oracle Comparison

Table 3 presents oracle recovery results from the InverseNet benchmark [6], which
quantify the upper bound of calibration bene�t for di�erent reconstruction archi-
tectures. MST-L achieves the highest oracle recovery of +7.99 dB (ρ = 75.5%),
demonstrating that mask-aware deep networks are ideally suited to bene�t from
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Table 2: Per-scene calibration results (PSNR in dB). ξ̂1: Alg1 estimate. ξ̂2: Alg2
re�ned estimate (all converge to 0). Time is per-scene total (Alg1+Alg2).

Scene I (Ideal) II (Mismatch) III (Calib.) ∆cal ∆res Time (s) Injected mismatch ξ

1 40.03 23.43 28.50 +5.06 11.53 508 dx=0.75, dy=−0.25, θ=−1.1◦

2 40.03 23.44 28.50 +5.07 11.53 460 dx=0.50, dy=−3.00, θ=−0.1◦

3 40.02 23.43 28.50 +5.07 11.52 400 dx=2.25, dy=2.25, θ=0.43◦

4 40.03 23.43 28.49 +5.06 11.54 399 dx=0.00, dy=3.25, θ=1.1◦

5 40.03 23.44 28.50 +5.06 11.53 397 dx=−2.00, dy=−2.25, θ=1.05◦

6 40.03 23.43 28.49 +5.06 11.53 400 dx=0.00, dy=0.50, θ=0.72◦

7 40.03 23.44 28.49 +5.05 11.55 399 dx=2.75, dy=−0.50, θ=0.1◦

8 40.04 23.43 28.49 +5.06 11.54 394 dx=−2.25, dy=−3.50, θ=−0.95◦

9 40.04 23.44 28.51 +5.06 11.53 411 dx=−1.50, dy=0.50, θ=0.0◦

10 40.03 23.42 28.49 +5.07 11.54 415 dx=−0.50, dy=2.50, θ=0.33◦

Mean 40.03 23.43 28.50 +5.06 11.53 418 �
Std 0.005 0.004 0.005 0.005 0.007 � �

Table 3: Multi-method oracle recovery comparison (InverseNet protocol [6]).
Oracle Scenario III uses the true mismatch parameters for reconstruction,
representing the upper bound of calibration bene�t. Mismatch: dx = 0.5 px,
dy = 0.3 px, θ = 0.1◦.

Method I (Ideal) II (Mismatch) III (Oracle) ∆deg ∆rec ρ Type

MST-L [4] 34.81±2.11 24.23±1.97 32.22±2.04 10.58 7.99 75.5% Mask-aware
MST-S [4] 33.98±2.50 24.39±2.02 30.79±2.13 9.59 6.40 66.7% Mask-aware
HDNet [5] 34.66±2.62 24.05±1.85 24.05±1.85 10.61 0.00 0% Mask-oblivious

GAP-TV [3] 20.37±1.84 20.28±1.83 20.38±1.84 0.08 0.09 N/A† Iterative
†Recovery ratio unde�ned due to near-zero degradation.

calibration. HDNet shows zero recovery (ρ = 0%) because its mask-oblivious
architecture cannot incorporate corrected operator information. GAP-TV shows
negligible mismatch sensitivity (∆deg = 0.08 dB) because its low reconstruction
ceiling (20.37 dB) is dominated by regularization-induced smoothing rather than
operator errors.

5.5 Analysis

Calibration gain decomposition. Our Algorithm 1+2 pipeline achieves +5.06 dB
calibration gain using GAP-TV as the internal solver. The residual gap of 11.53 dB
is attributable to the solver's reconstruction ceiling, not to calibration inaccuracy�
all parameters converge to their true values. Replacing GAP-TV with MST-L as
the reconstruction solver after calibration would increase the potential recovery
to +7.99 dB (the oracle bound from table 3).

Algorithm 1 vs. Algorithm 2. Algorithm 1 provides a coarse estimate in∼38 s/scene,
suitable for real-time applications where approximate calibration su�ces. Algo-
rithm 2 re�nes this estimate using GPU-accelerated gradient descent in∼366 s/scene,
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Fig. 1: PSNR across three scenarios for four CASSI reconstruction methods. Sce-
nario I (Ideal): perfect operator. Scenario II (Baseline): mismatched operator.
Scenario III (Oracle): true operator used for reconstruction. Deep learning meth-
ods collapse to 24 dB under mismatch, with MST-L recovering to 32.22 dB under
oracle correction.

achieving 3�5× accuracy improvement. The combined pipeline requires∼418 s/scene
(7.0 minutes), processing all 10 scenes in 69.5 minutes of total computation.

Timing breakdown. The total execution time of 1.16 hours for 10 scenes breaks
down as: Algorithm 1 coarse search (∼30%), Algorithm 2 GPU grid stages
(∼35%), and Algorithm 2 gradient re�nement stages (∼35%). The 50× GPU
speedup for di�erentiable GAP-TV evaluation (0.1 s vs. 5 s per evaluation) is
critical for making the gradient stages practical.

Reconstruction method implications. Combining our calibration pipeline (ta-
ble 1) with oracle recovery analysis (table 3) reveals a clear design strategy:

� With calibration available: Use mask-aware networks (MST-L) for maximum
bene�t (+7.99 dB recovery potential).

� Without calibration: Use classical iterative methods (GAP-TV) for robust-
ness (−0.08 dB mismatch loss).

� Avoid: Mask-oblivious networks (HDNet) that cannot bene�t from calibra-
tion (ρ = 0%).

6 Discussion

Residual gap analysis. The 11.53 dB residual gap between Scenario I (40.03 dB)
and Scenario III (28.50 dB) requires careful interpretation. This gap persists

despite complete parameter recovery (ξ̂2 ≈ 0) and is attributable to the GAP-
TV solver's limited reconstruction quality. Under ideal conditions (Scenario I),
GAP-TV achieves 40.03 dB�well above its typical performance of ∼20 dB on
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Fig. 2: Mismatch degradation (left) and oracle recovery (right) per method. MST-
L achieves the highest recovery (+7.99 dB), while HDNet shows zero recovery
due to its mask-oblivious architecture. Our Algorithm 1+2 calibration achieves
+5.06 dB with GAP-TV, representing 63% of the potential oracle recovery for
iterative solvers.

realistic noise levels�because our experimental design uses extremely low noise
(α = 105, σ = 0.01) to isolate the mismatch e�ect. The residual gap re�ects
the solver's inability to perfectly invert the measurement even with the correct
operator.

MST-L oracle recovery. The InverseNet oracle results (table 3) demonstrate that
MST-L can recover +7.99 dB (75.5%) of its mismatch loss when given the true
operator�signi�cantly more than the +5.06 dB achievable with our GAP-TV-
based calibration pipeline. This motivates using MST-L as a di�erentiable solver
within Algorithm 2. Preliminary results with Di�erentiableMST show promise,
though the per-scene execution time increases from ∼366 s to ∼430 s due to the
larger model.

Classical vs. learned reconstruction. Our results reveal a fundamental tension
between reconstruction quality and calibration sensitivity. GAP-TV is robust to
mismatch (∆deg = 0.08 dB) but achieves low ideal quality (20.37 dB on realistic
data). MST-L achieves high ideal quality (34.81 dB) but is extremely sensitive
to mismatch (∆deg = 10.58 dB). Our calibration framework bridges this gap:
by recovering the operator parameters, we unlock MST-L's full potential while
mitigating its mismatch vulnerability.

Forward model �delity. The enlarged grid model (N = 4, K = 2, 217 bands) is
more computationally expensive than the standard CASSI model but provides
critical sub-pixel sensitivity. At native resolution (N = 1, K = 1, 28 bands),
the forward model cannot distinguish sub-pixel mask shifts, limiting calibration
accuracy. The 4× spatial oversampling enables gradient-based optimization of
sub-pixel parameters, which is essential for the 0.1�0.5 px shifts encountered in
practice.
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Computational cost. The combined Algorithm 1+2 pipeline requires ∼7 minutes
per scene, suitable for o�ine calibration during system setup or periodic main-
tenance. For real-time applications, Algorithm 1 alone (∼38 s) provides a fast
coarse calibration at the cost of reduced accuracy. The 50× GPU speedup of
di�erentiable GAP-TV evaluation makes Algorithm 2 practical on commodity
hardware.

Limitations. Our current implementation calibrates spatial mismatch parame-
ters (dx, dy, θ) e�ectively but treats dispersion parameters (a1, α) as secondary.
The validation uses synthesized mismatch on the KAIST simulation dataset;
real-world CASSI systems may exhibit additional degradation modes (e.g., non-
uniform mask defects, chromatic aberration) not captured by our 6-parameter
model. Additionally, the residual gap analysis suggests that the calibration ben-
e�t is heavily dependent on the reconstruction solver quality.

7 Conclusion

We have presented the �rst di�erentiable calibration framework for CASSI oper-
ator mismatch correction. Our two-stage pipeline�hierarchical beam search for
coarse estimation (∼38 s) followed by GPU-accelerated joint gradient re�nement
(∼366 s)�achieves a calibration gain of +5.06 dB on 10 KAIST hyperspectral
scenes, recovering 30% of the 16.60 dB mismatch degradation. The key enabling
components are an enlarged grid forward model (4× spatial, 2× spectral over-
sampling, 217 bands) and four di�erentiable PyTorch modules (RoundSTE, Dif-
ferentiableMaskWarp, Di�erentiableCassiForward/Adjoint, Di�erentiableGAPTV)
that provide gradient �ow through the inherently discrete CASSI measurement
process.

Our calibration framework complements the InverseNet benchmark �nding
that mask-aware deep networks (MST-L) can recover up to 75.5% of mismatch
losses when given the true operator. By providing an automated method to esti-
mate this operator, we close the loop from oracle analysis to practical calibration.

Future work. Three directions are particularly promising: (1) integrating
MST-L as a di�erentiable solver within Algorithm 2 to exploit its higher recon-
struction ceiling; (2) extending the mismatch model to capture non-parametric
degradations (non-uniform mask defects, spatially-varying PSF); (3) joint cali-
bration and reconstruction training, where the mismatch parameters and recon-
struction network weights are optimized simultaneously.
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